Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell ; 162(3): 493-504, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26189681

ABSTRACT

Dengue is the most common vector-borne viral disease, causing nearly 400 million infections yearly. Currently there are no approved therapies. Antibody epitopes that elicit weak humoral responses may not be accessible by conventional B cell panning methods. To demonstrate an alternative strategy to generating a therapeutic antibody, we employed a non-immunodominant, but functionally relevant, epitope in domain III of the E protein, and engineered by structure-guided methods an antibody directed to it. The resulting antibody, Ab513, exhibits high-affinity binding to, and broadly neutralizes, multiple genotypes within all four serotypes. To assess therapeutic relevance of Ab513, activity against important human clinical features of dengue was investigated. Ab513 mitigates thrombocytopenia in a humanized mouse model, resolves vascular leakage, reduces viremia to nearly undetectable levels, and protects mice in a maternal transfer model of lethal antibody-mediated enhancement. The results demonstrate that Ab513 may reduce the public health burden from dengue.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Dengue Virus/physiology , Dengue/therapy , Immunodominant Epitopes/chemistry , Amino Acid Sequence , Animals , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Disease Models, Animal , Mice , Models, Molecular , Molecular Sequence Data , Phagocytosis , Protein Engineering , Receptors, Fc/immunology , Sequence Alignment
2.
BMC Biol ; 21(1): 36, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797789

ABSTRACT

BACKGROUND: Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS: We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.


Subject(s)
COVID-19 , Testis , Viral Tropism , Animals , Humans , Male , Angiotensin II/metabolism , Chlorocebus aethiops , COVID-19/pathology , SARS-CoV-2 , Testis/immunology , Testis/virology , Vero Cells
3.
Article in English | MEDLINE | ID: mdl-31061163

ABSTRACT

Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world's population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2'-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed the anti-DENV activity of these nucleoside analogs. Molecular models were assembled for DENV serotype 2 (DENV-2) and JEV RNA-dependent RNA polymerase replication complexes bound to nucleotide inhibitors. These models show similarities between JEV and DENV-2, which recognize the same nucleotide inhibitors. Collectively, our findings provide promising compounds and a structural rationale for the development of direct-acting antiviral agents with dual activity against JEV and DENV infections.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/drug therapy , Encephalitis Viruses, Japanese/drug effects , Nucleosides/analogs & derivatives , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Dengue/blood , Dengue/pathology , Dengue Virus/genetics , Dengue Virus/physiology , Drug Evaluation, Preclinical/methods , Encephalitis Viruses, Japanese/genetics , Encephalitis Viruses, Japanese/physiology , Encephalitis, Arbovirus/drug therapy , Mice , Models, Molecular , Nucleosides/chemistry , Nucleosides/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication/drug effects
4.
Nat Mater ; 17(11): 971-977, 2018 11.
Article in English | MEDLINE | ID: mdl-30349030

ABSTRACT

Zika virus is a mosquito-borne virus that is associated with neurodegenerative diseases, including Guillain-Barré syndrome1 and congenital Zika syndrome2. As Zika virus targets the nervous system, there is an urgent need to develop therapeutic strategies that inhibit Zika virus infection in the brain. Here, we have engineered a brain-penetrating peptide that works against Zika virus and other mosquito-borne viruses. We evaluated the therapeutic efficacy of the peptide in a lethal Zika virus mouse model exhibiting systemic and brain infection. Therapeutic treatment protected against mortality and markedly reduced clinical symptoms, viral loads and neuroinflammation, as well as mitigated microgliosis, neurodegeneration and brain damage. In addition to controlling systemic infection, the peptide crossed the blood-brain barrier to reduce viral loads in the brain and protected against Zika-virus-induced blood-brain barrier injury. Our findings demonstrate how engineering strategies can be applied to develop peptide therapeutics and support the potential of a brain-penetrating peptide to treat neurotropic viral infections.


Subject(s)
Antiviral Agents/therapeutic use , Brain/metabolism , Peptides/therapeutic use , Zika Virus Infection/drug therapy , Animals , Antiviral Agents/pharmacokinetics , Humans , Male , Mice , Mice, Inbred BALB C , Peptides/pharmacokinetics
5.
Eur J Immunol ; 47(3): 585-596, 2017 03.
Article in English | MEDLINE | ID: mdl-27995621

ABSTRACT

Gout is a self-limited inflammatory disease caused by deposition of monosodium urate (MSU) crystals in the joints. Resolution of inflammation is an active process leading to restoration of tissue homeostasis. Here, we studied the role of Annexin A1 (AnxA1), a glucocorticoid-regulated protein that has anti-inflammatory and proresolving actions, in resolution of acute gouty inflammation. Injection of MSU crystals in the knee joint of mice induced inflammation that was associated with expression of AnxA1 during the resolving phase of inflammation. Neutralization of AnxA1 with antiserum or blockade of its receptor with BOC-1 (nonselective) or WRW4 (selective) prevented the spontaneous resolution of gout. There was greater neutrophil infiltration after challenge with MSU crystals in AnxA1 knockout mice (AnxA1-/- ) and delayed resolution associated to decreased neutrophil apoptosis and efferocytosis. Pretreatment of mice with AnxA1-active N-terminal peptide (Ac2-26 ) decreased neutrophil influx, IL-1ß, and CXCL1 production in periarticular joint. Posttreatment with Ac2-26 decreased neutrophil accumulation, IL-1ß, and hypernociception, and improved the articular histopathological score. Importantly, the therapeutic effects of Ac2-26 were associated with increased neutrophils apoptosis and shortened resolution intervals. In conclusion, AnxA1 plays a crucial role in the context of acute gouty inflammation by promoting timely resolution of inflammation.


Subject(s)
Annexin A1/metabolism , Anti-Inflammatory Agents/therapeutic use , Gout/drug therapy , Inflammation/drug therapy , Joints/drug effects , Neutrophils/physiology , Peptides/therapeutic use , Animals , Annexin A1/genetics , Annexin A1/therapeutic use , Antibodies, Blocking/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , Cell Movement/drug effects , Disease Models, Animal , Gout/chemically induced , Gout/immunology , Humans , Inflammation/immunology , Joints/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/drug effects , Oligopeptides/administration & dosage , Phagocytosis/drug effects , Phagocytosis/genetics , Uric Acid
6.
Eur J Immunol ; 46(1): 204-11, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26449770

ABSTRACT

Gout manifests as recurrent episodes of acute joint inflammation and pain due to the deposition of monosodium urate (MSU) crystals within the affected tissue in a process dependent on NLRP3 inflammasome activation. The synthesis, activation, and release of IL-1ß are crucial for MSU-induced inflammation. The current study evaluated the mechanism by which TNF-α contributed to MSU-induced inflammation. Male C57BL/6J or transgenic mice were used in this study and inflammation was induced by the injection of MSU crystals into the joint. TNF-α was markedly increased in the joint after the injection of MSU. There was inhibition in the infiltration of neutrophils, production of CXCL1 and IL-1ß, and decreased hypernociception in mice deficient for TNF-α or its receptors. Pharmacological blockade of TNF-α with Etanercept or pentoxyfylline produced similar results. Mechanistically, TNF-α blockade resulted in lower amounts of IL-1ß protein and pro-IL-1ß mRNA transcripts in joints. Gene-modified mice that express only transmembrane TNF-α had an inflammatory response similar to that of WT mice and blockade of soluble TNF-α (XPro™1595) did not decrease MSU-induced inflammation. In conclusion, TNF-α drives expression of pro-IL-1ß mRNA and IL-1ß protein in experimental gout and that its transmembrane form is sufficient to trigger MSU-induced inflammation in mice.


Subject(s)
Gout/immunology , Hyperalgesia/etiology , Inflammation/immunology , Tumor Necrosis Factor-alpha/metabolism , Animals , Disease Models, Animal , Gout/complications , Gout/metabolism , Inflammation/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Knee Joint , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Physical Stimulation , Real-Time Polymerase Chain Reaction , Uric Acid/adverse effects , Uric Acid/immunology
7.
Med Microbiol Immunol ; 203(4): 231-50, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24723052

ABSTRACT

Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1-4). Epidemiologic and observational studies demonstrate that the majority of severe dengue cases, dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), occurs predominantly in either individuals with cross-reactive immunity following a secondary heterologous infection or in infants with primary DENV infections born from dengue-immune mothers, suggesting that B-cell-mediated and antibody responses impact on disease evolution. We demonstrate here that B cells play a pivotal role in host responses against primary DENV infection in mice. After infection, µMT(-/-) mice showed increased viral loads followed by severe disease manifestation characterized by intense thrombocytopenia, hemoconcentration, cytokine production and massive liver damage that culminated in death. In addition, we show that poly and monoclonal anti-DENV-specific antibodies can sufficiently increase viral replication through a suppression of early innate antiviral responses and enhance disease manifestation, so that a mostly non-lethal illness becomes a fatal disease resembling human DHF/DSS. Finally, treatment with intravenous immunoglobulin containing anti-DENV antibodies confirmed the potential enhancing capacity of subneutralizing antibodies to mediate virus infection and replication and induce severe disease manifestation of DENV-infected mice. Thus, our results show that humoral responses unleashed during DENV infections can exert protective or pathological outcomes and provide insight into the pathogenesis of this important human pathogen.


Subject(s)
Antibody-Dependent Enhancement , Dengue Virus/immunology , Dengue/immunology , Dengue/pathology , Immunity, Innate , Animals , B-Lymphocytes/immunology , Cytokines/blood , Death , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Thrombocytopenia , Viral Load
8.
Arthritis Rheum ; 64(2): 474-84, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21952942

ABSTRACT

OBJECTIVE: Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)-derived leukotriene B(4) (LTB(4) ) in driving tissue inflammation and hypernociception in a murine model of gout. METHODS: Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1ß (IL-1ß), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB(4) activity, cytokine (IL-1ß, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. RESULTS: Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophil-dependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1ß/MyD88-dependent manner. LTB(4) was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1ß production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB(4) after MSU crystal injection, and LTB(4) was relevant in the MSU crystal-induced maturation of IL-1ß. Mechanistically, LTB(4) drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. CONCLUSION: These results reveal the role of the NLRP3 inflammasome in mediating MSU crystal-induced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB(4) in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.


Subject(s)
Carrier Proteins/metabolism , Gout/metabolism , Hyperalgesia/metabolism , Inflammasomes/metabolism , Leukotriene B4/metabolism , Neutrophil Infiltration/physiology , Neutrophils/metabolism , Animals , Caspase 1/metabolism , Cytokines/metabolism , Gout/chemically induced , Gout/immunology , Hyperalgesia/immunology , Inflammasomes/immunology , Inflammation/immunology , Inflammation/metabolism , Interleukin-1beta/metabolism , Leukotriene B4/immunology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils/immunology , Reactive Oxygen Species/metabolism , Synovial Membrane/immunology , Synovial Membrane/metabolism , Uric Acid/pharmacology
9.
Life Sci ; 324: 121750, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37142087

ABSTRACT

AIMS: Millions of people died during the COVID-19 pandemic, but the vast majority of infected individuals survived. Now, some consequences of the disease, known as long COVID, are been revealed. Although the respiratory system is the target of Sars-CoV-2, COVID-19 can influence other parts of the body, including bone. The aim of this work was to investigate the impact of acute coronavirus infection in bone metabolism. MAIN METHODS: We evaluated RANKL/OPG levels in serum samples of patients with and without acute COVID-19. In vitro, the effects of coronavirus in osteoclasts and osteoblasts were investigated. In vivo, we evaluated the bone phenotype in a BSL2 mouse model of SARS-like disease induced by murine coronavirus (MHV-3). KEY FINDINGS: Patients with acute COVID-19 presented decreased OPG and increased RANKL/OPG ratio in the serum versus healthy individuals. In vitro, MHV-3 infected macrophages and osteoclasts, increasing their differentiation and TNF release. Oppositely, osteoblasts were not infected. In vivo, MHV-3 lung infection triggered bone resorption in the femur of mice, increasing the number of osteoclasts at 3dpi and decreasing at 5dpi. Indeed, apoptotic-caspase-3+ cells have been detected in the femur after infection as well as viral RNA. RANKL/OPG ratio and TNF levels also increased in the femur after infection. Accordingly, the bone phenotype of TNFRp55-/- mice infected with MHV-3 showed no signs of bone resorption or increase in the number of osteoclasts. SIGNIFICANCE: Coronavirus induces an osteoporotic phenotype in mice dependent on TNF and on macrophage/osteoclast infection.


Subject(s)
Bone Resorption , COVID-19 , Animals , Humans , Mice , Bone Resorption/metabolism , Cell Differentiation , COVID-19/metabolism , Osteoblasts , Osteoclasts/metabolism , Osteoprotegerin/metabolism , Pandemics , Phenotype , Post-Acute COVID-19 Syndrome , RANK Ligand/metabolism , SARS-CoV-2/metabolism , Murine hepatitis virus/metabolism , Murine hepatitis virus/pathogenicity , Coronavirus Infections/genetics , Coronavirus Infections/metabolism
10.
Neurochem Int ; 169: 105567, 2023 10.
Article in English | MEDLINE | ID: mdl-37348761

ABSTRACT

COVID-19 affects primarily the lung. However, several other systemic alterations, including muscle weakness, fatigue and myalgia have been reported and may contribute to the disease outcome. We hypothesize that changes in the neuromuscular system may contribute to the latter symptoms observed in COVID-19 patients. Here, we showed that C57BL/6J mice inoculated intranasally with the murine betacoronavirus hepatitis coronavirus 3 (MHV-3), a model for studying COVID-19 in BSL-2 conditions that emulates severe COVID-19, developed robust motor alterations in muscle strength and locomotor activity. The latter changes were accompanied by degeneration and loss of motoneurons that were associated with the presence of virus-like particles inside the motoneuron. At the neuromuscular junction level, there were signs of atrophy and fragmentation in synaptic elements of MHV-3-infected mice. Furthermore, there was muscle atrophy and fiber type switch with alteration in myokines levels in muscles of MHV-3-infected mice. Collectively, our results show that acute infection with a betacoronavirus leads to robust motor impairment accompanied by neuromuscular system alteration.


Subject(s)
COVID-19 , Murine hepatitis virus , Mice , Animals , Mice, Inbred C57BL , Motor Neurons , Neuromuscular Junction , Murine hepatitis virus/physiology
11.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Article in English | MEDLINE | ID: mdl-36526272

ABSTRACT

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Subject(s)
COVID-19 , Sepsis , Humans , Mice , Animals , Oseltamivir/adverse effects , Zanamivir/adverse effects , Neuraminidase/metabolism , Neuraminidase/pharmacology , Neutrophils , Matrix Metalloproteinase 9/metabolism , Reactive Oxygen Species , Lipopolysaccharides/pharmacology , Sepsis/chemically induced
12.
Arthritis Rheum ; 63(9): 2651-60, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21567381

ABSTRACT

OBJECTIVE: Neutrophil accumulation contributes to the pathogenesis of rheumatoid arthritis. This study was undertaken to examine the ability of H2O2 to influence neutrophilic inflammation in a model of antigen-induced arthritis (AIA) in mice. METHODS: AIA was induced by administration of antigen into the knee joints of previously immunized mice. Neutrophil accumulation was measured by counting neutrophils in the synovial cavity and assaying myeloperoxidase activity in the tissue surrounding the mouse knee joint. Apoptosis was determined by morphologic and molecular techniques. The role of H2O2 was studied using mice that do not produce reactive oxygen species (gp91phox-/- mice) and drugs that enhance the generation or enhance the degradation of H2O2. RESULTS: Antigen challenge of immunized mice induced neutrophil accumulation that peaked at 12-24 hours after challenge. H2O2 production peaked at 24 hours, after which time, the inflammation resolved. Neutrophil recruitment was similar in wild-type and gp91phox-/- mice, but there was delayed resolution in gp91phox-/- mice or after administration of catalase. In contrast, administration of H2O2 or superoxide dismutase (SOD) resolved neutrophilic inflammation. The resolution of inflammation induced by SOD or H2O2 was accompanied by an increase in the number of apoptotic neutrophils. Apoptosis was associated with an increase in Bax and caspase 3 cleavage and was secondary to phosphatidylinositol 3-kinase (PI3K)/Akt activation. CONCLUSION: Our findings indicate that levels of H2O2 increase during neutrophil influx and are necessary for the natural resolution of neutrophilic inflammation. Mechanistically, enhanced levels of H2O2 (endogenous or exogenous) inhibit p-Akt/NF-κB and induce apoptosis of migrated neutrophils. Modulation of H2O2 production may represent a novel strategy for controlling neutrophilic inflammation in the joints.


Subject(s)
Arthritis, Experimental/immunology , Hydrogen Peroxide/metabolism , Neutrophils/immunology , Synovial Membrane/metabolism , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Joints/immunology , Joints/metabolism , Joints/pathology , Male , Mice , Neutrophils/metabolism , Neutrophils/pathology , Synovial Membrane/immunology , Synovial Membrane/pathology
13.
ASN Neuro ; 14: 17590914221121257, 2022.
Article in English | MEDLINE | ID: mdl-36017573

ABSTRACT

SUMMARY STATEMENT: In utero exposure to ZIKV leads to decreased number of neurons in adult mice. Female mice exposed to ZIKV in utero exhibit lower levels of BDNF, a decrease in synaptic markers, memory deficits, and risk-taking behavior during adulthood.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Female , Male , Memory Disorders/etiology , Mice , Neurons , Zika Virus Infection/complications
14.
Cells ; 11(17)2022 08 31.
Article in English | MEDLINE | ID: mdl-36078125

ABSTRACT

Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2-26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.


Subject(s)
Chikungunya Fever , Inflammation , Adaptor Proteins, Signal Transducing/metabolism , Animals , Annexin A1/genetics , Annexin A1/metabolism , Arthralgia , Chikungunya Fever/metabolism , Inflammation/metabolism , Mice , Mice, Knockout , Receptors, Formyl Peptide/metabolism
15.
bioRxiv ; 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-33200130

ABSTRACT

Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.

16.
J Neuroinflammation ; 8: 23, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21388530

ABSTRACT

BACKGROUND: Dengue, one of the most important arboviral diseases of humans, may cause severe systemic disease. Although dengue virus (DENV) has been considered to be a non-neurotropic virus, dengue infection has been associated recently with a series of neurological syndromes, including encephalitis. In this work, we evaluated behavioral changes and inflammatory parameters in C57BL/6 mice infected with non-adapted dengue virus 3 (DENV-3) genotype I. METHODS: C57BL/6 mice received 4×10(3) PFU of DENV-3 by an intracranial route. We evaluated the trafficking of leukocytes in brain microvasculature using intravital microscopy, and evaluated chemokine and cytokine profiling by an ELISA test at 3 and 6 days post infection (p.i.). Furthermore, we determined myeloperoxidase activity and immune cell populations, and also performed histopathological analysis and immunostaining for the virus in brain tissue. RESULTS: All animals developed signs of encephalitis and died by day 8 p.i. Motor behavior and muscle tone and strength parameters declined at day 7 p.i. We observed increased leukocyte rolling and adhesion in brain microvasculature of infected mice at days 3 and 6 p.i. The infection was followed by significant increases in IFN-γ, TNF-α, CCL2, CCL5, CXCL1, and CXCL2. Histological analysis showed evidence of meningoencephalitis and reactive gliosis. Increased numbers of neutrophils, CD4+ and CD8+ T cells were detected in brain of infected animals, notably at day 6 p.i. Cells immunoreactive for anti-NS-3 were visualized throughout the brain. CONCLUSION: Intracerebral infection with non-adapted DENV-3 induces encephalitis and behavioral changes that precede lethality in mice.


Subject(s)
Behavior, Animal/physiology , Dengue Virus/pathogenicity , Dengue/mortality , Dengue/physiopathology , Meningoencephalitis/mortality , Meningoencephalitis/physiopathology , Meningoencephalitis/virology , Animals , Dengue/pathology , Dengue/virology , Dengue Virus/genetics , Humans , Male , Meningoencephalitis/pathology , Mice , Mice, Inbred C57BL , Survival Rate
17.
PLoS Negl Trop Dis ; 15(5): e0009425, 2021 05.
Article in English | MEDLINE | ID: mdl-34048439

ABSTRACT

Zika virus (ZIKV) infection of neurons leads to neurological complications and congenital malformations of the brain of neonates. To date, ZIKV mechanism of infection and pathogenesis is not entirely understood and different studies on gene regulation of ZIKV-infected cells have identified a dysregulation of inflammatory and stem cell maintenance pathways. MicroRNAs (miRNAs) are post-transcriptional regulators of cellular genes and they contribute to cell development in normal function and disease. Previous reports with integrative analyses of messenger RNAs (mRNAs) and miRNAs during ZIKV infection have not identified neurological pathway defects. We hypothesized that dysregulation of pathways involved in neurological functions will be identified by RNA profiling of ZIKV-infected fetal neurons. We therefore used microarrays to analyze gene expression levels following ZIKV infection of fetal murine neurons. We observed that the expression levels of transcription factors such as neural PAS domain protein 4 (Npas4) and of three members of the orphan nuclear receptor 4 (Nr4a) were severely decreased after viral infection. We confirmed that their downregulation was at both the mRNA level and at the protein level. The dysregulation of these transcription factors has been previously linked to aberrant neural functions and development. We next examined the miRNA expression profile in infected primary murine neurons by microarray and found that various miRNAs were dysregulated upon ZIKV infection. An integrative analysis of the differentially expressed miRNAs and mRNAs indicated that miR-7013-5p targets Nr4a3 gene. Using miRmimics, we corroborated that miR-7013-5p downregulates Nr4a3 mRNA and protein levels. Our data identify a profound dysregulation of neural transcription factors with an overexpression of miR-7013-5p that results in decreased Nr4a3 expression, likely a main contributor to ZIKV-induced neuronal dysfunction.


Subject(s)
Neurons/metabolism , Transcription Factors/metabolism , Zika Virus Infection/pathology , Zika Virus/pathogenicity , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cells, Cultured , Down-Regulation , Embryo, Mammalian/virology , Gene Expression Profiling , Mice , MicroRNAs/genetics , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , RNA, Messenger/genetics , Transcription Factors/genetics
18.
Viruses ; 11(6)2019 06 17.
Article in English | MEDLINE | ID: mdl-31212905

ABSTRACT

Zika virus (ZIKV) only induces mild symptoms in adults; however, it can cause congenital Zika syndrome (CZS), including microcephaly. Most of the knowledge on ZIKV pathogenesis was gained using immunocompromised mouse models, which do not fully recapitulate human pathology. Moreover, the study of the host immune response to ZIKV becomes challenging in these animals. Thus, the main goal of this study was to develop an immunocompetent mouse model to study the ZIKV spread and teratogeny. FVB/NJ immune competent dams were infected intravaginally with ZIKV during the early stage of pregnancy. We found that the placentae of most fetuses were positive for ZIKV, while the virus was detected in the brain of only about 42% of the embryos. To investigate the host immune response, we measured the expression of several inflammatory factors. Embryos from ZIKV-infected dams had an increased level of inflammatory factors, as compared to Mock. Next, we compared the gene expression levels in embryos from ZIKV-infected dams that were either negative or positive for ZIKV in the brain. The mRNA levels of viral response genes and cytokines were increased in both ZIKV-positive and negative brains. Interestingly, the levels of chemokines associated with microcephaly in humans, including CCL2 and CXCL10, specifically increased in embryos harboring ZIKV in the embryo brains.


Subject(s)
Disease Models, Animal , Host-Pathogen Interactions , Pregnancy Complications, Infectious/pathology , Zika Virus Infection/pathology , Zika Virus/pathogenicity , Animals , Brain/virology , Female , Gene Expression Profiling , Immunologic Factors/biosynthesis , Mice , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/virology
19.
J Leukoc Biol ; 106(3): 619-629, 2019 09.
Article in English | MEDLINE | ID: mdl-31392775

ABSTRACT

This study investigates the participation of PI3Kγ in the development of joint inflammation and dysfunction in an experimental model of acute gout in mice. Acute gout was induced by injection of monosodium urate (MSU) crystals into the tibiofemoral joint of mice. The involvement of PI3Kγ was evaluated using a selective inhibitor and mice deficient for PI3Kγ (PI3Kγ-/- ) or with loss of kinase activity. Neutrophils recovered from the inflamed joint were quantified and stained for phosphorylated Akt (pAkt) and production of reactive oxygen species (ROS). The adherence of leukocytes to the joint microvasculature was assessed by intravital microscopy and cleaved caspase-1 by Western blot. Injection of MSU crystals induced massive accumulation of neutrophils expressing phosphorylated Akt. In the absence of PI3Kγ, there was reduction of pAkt expression, chemokine production, and neutrophil recruitment. Genetic or pharmacological inhibition of PI3Kγ reduced the adherence of leukocytes to the joint microvasculature, even in joints with established inflammation. Neutrophils from PI3Kγ-/- mice produced less ROS than wild-type neutrophils. There was decreased joint damage and dysfunction in the absence of PI3Kγ. In addition, in the absence of PI3Kγ activity, there was reduction of cleaved caspase-1 and IL-1ß production in synovial tissue after injection of MSU crystals and leukotriene B4 . Our studies suggest that PI3Kγ is crucial for MSU crystal-induced acute joint inflammation. It is necessary for regulating caspase-1 activation and for mediating neutrophil migration and activation. Drugs that impair PI3Kγ function may be useful to control acute gout inflammation.


Subject(s)
Arthritis, Gouty/enzymology , Arthritis, Gouty/immunology , Caspase 1/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Neutrophil Infiltration , Acute Disease , Animals , Cell Adhesion , Cell Movement , Class Ib Phosphatidylinositol 3-Kinase/deficiency , Cytoplasm/metabolism , Enzyme Activation , Inflammasomes/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism , Joints/pathology , Leukotriene B4/metabolism , Male , Mice, Inbred C57BL , Microvessels/pathology , Neutrophils/metabolism , Nociception , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Synovial Membrane/blood supply , Uric Acid
20.
PLoS Negl Trop Dis ; 13(1): e0007072, 2019 01.
Article in English | MEDLINE | ID: mdl-30699122

ABSTRACT

Yellow fever virus (YFV) is a member of the Flaviviridae family. In Brazil, yellow fever (YF) cases have increased dramatically in sylvatic areas neighboring urban zones in the last few years. Because of the high lethality rates associated with infection and absence of any antiviral treatments, it is essential to identify therapeutic options to respond to YFV outbreaks. Repurposing of clinically approved drugs represents the fastest alternative to discover antivirals for public health emergencies. Other Flaviviruses, such as Zika (ZIKV) and dengue (DENV) viruses, are susceptible to sofosbuvir, a clinically approved drug against hepatitis C virus (HCV). Our data showed that sofosbuvir docks onto YFV RNA polymerase using conserved amino acid residues for nucleotide binding. This drug inhibited the replication of both vaccine and wild-type strains of YFV on human hepatoma cells, with EC50 values around 5 µM. Sofosbuvir protected YFV-infected neonatal Swiss mice and adult type I interferon receptor knockout mice (A129-/-) from mortality and weight loss. Because of its safety profile in humans and significant antiviral effects in vitro and in mice, Sofosbuvir may represent a novel therapeutic option for the treatment of YF. Key-words: Yellow fever virus; Yellow fever, antiviral; sofosbuvir.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , RNA, Viral/drug effects , Sofosbuvir/pharmacology , Yellow Fever/drug therapy , Yellow fever virus/drug effects , Animals , Chlorocebus aethiops , Disease Models, Animal , Hep G2 Cells , Humans , Mice , Mice, Knockout , RNA, Viral/blood , RNA, Viral/genetics , Vero Cells , Yellow Fever/blood , Yellow Fever/pathology , Yellow Fever/virology , Yellow fever virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL