Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Pharmacol Res ; 170: 105698, 2021 08.
Article in English | MEDLINE | ID: mdl-34058327

ABSTRACT

The emergence of pan-resistant strains in nosocomial settings underscores the urgent need of novel therapies targeting vital bacterial functions. Bacterial iron metabolism is a fascinating target for new antimicrobials. Iron mimetic metal Ga(III) has been repurposed as an antimicrobial drug, in pre-clinical studies and recent clinical studies have raised the possibility of using Ga(III) for the treatment of P. aeruginosa pulmonary infection. Ga(III) has been approved by FDA for the treatment of cancer, autoimmune and bone resorption disorders. However, some critical issues affect the therapeutic schedule of Ga(III), principally the intra-venous (i.v.) administration, and the nephrotoxicity caused by prolonged administration. Ga(III) aerosolization could represent a viable alternative for treatment of lung infections, since delivery of antimicrobial agents to the airways maximizes drug concentration at the site of infection, improves the therapeutic efficacy, and alleviates systemic toxic effects. We demonstrate the advantage of inhaled vs i.v. administered Ga(III), in terms of bio-distribution and lung acute toxicity, by using a rat model. In vivo results support the use of Ga(III) for inhalation since intra-tracheal Ga(III) delivery improved its persistence in the lung, while the i.v. administration caused rapid clearance and did not allow to attain a significant Ga(III) concentration in this organ. Moreover, local and systemic acute toxicity following intra-tracheal administration was not observed, since no significant signs of inflammation were found. At this stage of evidence, the direct administration of Ga(III) to the lung appears feasible and safe, boosting the development of Ga(III)-based drugs for inhalation therapy.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Gallium/administration & dosage , Lung/metabolism , Administration, Inhalation , Administration, Intravenous , Aerosols , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/toxicity , Biological Availability , Gallium/pharmacokinetics , Gallium/toxicity , Male , Rats, Wistar , Tissue Distribution
2.
Nanomedicine ; 23: 102113, 2020 01.
Article in English | MEDLINE | ID: mdl-31669084

ABSTRACT

C109 is a potent but poorly soluble FtsZ inhibitor displaying promising activity against Burkholderia cenocepacia, a high-risk pathogen for cystic fibrosis (CF) sufferers. To harness C109 for inhalation, we developed nanocrystal-embedded dry powders for inhalation suspension consisting in C109 nanocrystals stabilized with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) embedded in hydroxypropyl-ß-cyclodextrin (CD). The powders could be safely re-dispersed in water for in vitro aerosolization. Owing to the presence of a PEG shell, the rod shape and the peculiar aspect ratio, C109 nanocrystals were able to diffuse through artificial CF mucus. The promising technological features were completed by encouraging in vitro/in vivo effects. The formulations displayed no toxicity towards human bronchial epithelial cells and were active against planktonic and sessile B. cenocepacia strains. The efficacy of C109 nanosuspensions in combination with piperacillin was confirmed in a Galleria mellonella infection model, strengthening their potential for combined therapy of B. cenocepacia lung infections.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins/antagonists & inhibitors , Bronchi/microbiology , Burkholderia Infections/drug therapy , Burkholderia cenocepacia/growth & development , Cystic Fibrosis/drug therapy , Cytoskeletal Proteins/antagonists & inhibitors , Drug Delivery Systems , Epithelial Cells/microbiology , Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bronchi/metabolism , Bronchi/pathology , Burkholderia Infections/metabolism , Burkholderia Infections/pathology , Cell Line, Tumor , Cystic Fibrosis/metabolism , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Cytoskeletal Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use
3.
AAPS PharmSciTech ; 19(8): 3561-3570, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30255472

ABSTRACT

Due to the increasing incidents of antimicrobial-resistant pathogens, the development of new antibiotics and their efficient formulation for suitable administration is crucial. Currently, one group of promising antimicrobial compounds are the benzophenone tetra-amides which show good activity even against gram-positive, drug-resistant pathogens. These compounds suffer from poor water solubility and bioavailability. It is therefore important to develop dosage forms which can address this disadvantage while also maintaining efficacy and potentially generating long-term exposures to minimize frequent dosing. Biodegradable nanoparticles provide one solution, and we describe here the encapsulation of the experimental benzophenone-based antibiotic, SV7. Poly-lactic-co-glycolic-acid (PLGA) nanoparticles were optimized for their physicochemical properties, their encapsulation efficiency, sustained drug release as well as antimicrobial activity. The optimized formulation contained particles smaller than 200 nm with a slightly negative zeta potential which released 39% of their drug load over 30 days. This formulation maintains the antibacterial activity of SV7 while minimizing the impact on mammalian cells.


Subject(s)
Anti-Bacterial Agents/chemistry , Benzophenones/chemistry , Drug Delivery Systems , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Benzophenones/administration & dosage , Cells, Cultured , Drug Compounding , Mice , Nanoparticles
4.
Biomacromolecules ; 17(5): 1561-71, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27002689

ABSTRACT

We have recently demonstrated that the specific inhibition of nuclear factor-κB by a decoy oligonucleotide (dec-ODN) delivered through inhalable large porous particles (LPP) made of poly(lactic-co-glycolic acid) (PLGA) may be highly beneficial for long-term treatment of lung inflammation. Nevertheless, besides chronic inflammation, multifunctional systems aimed to control also infection are required in chronic lung diseases, such as cystic fibrosis (CF). In this work, we tested the hypothesis that engineering PLGA-based LPP with branched poly(ethylenimine) (PEI) may improve LPP properties for pulmonary delivery of dec-ODN, with particular regard to the treatment of Pseudomonas aeruginosa lung infections. After getting insight into the role of PEI on the technological properties of PLGA-based LPP for delivery of dec-ODN, the putative synergistic effect of PEI free or PEI released from LPP on in vitro antimicrobial activity of tobramycin (Tb) and aztreonam (AZT) against P. aeruginosa was elucidated. Meanwhile, cytotoxicity studies on A549 cells were carried out. Results clearly demonstrate that the dry powders have promising aerosolization properties and afford a prolonged in vitro release of both dec-ODN and PEI. The encapsulation of PEI into LPP results in a 2-fold reduction of the minimum inhibitory concentration of AZT, while reducing the cytotoxic effect of PEI. Of note, the developed ODN/PLGA/PEI LPP persisted at lung at least for 14 days after intratracheal administration in rats where they can provide sustained and combined release of dec-ODN and PEI. dec-ODN will likely act as an anti-inflammatory drug, while PEI may enhance the therapeutic activity of inhaled antibiotics, which are commonly employed for the treatment of concomitant lung infections.


Subject(s)
Drug Carriers/chemistry , Oligonucleotides/administration & dosage , Polyethyleneimine/chemistry , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Respiratory Tract Infections/drug therapy , Animals , Chronic Disease , Humans , Lactic Acid/chemistry , Male , Oligonucleotides/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Porosity , Pseudomonas Infections/microbiology , Rats , Rats, Wistar , Respiratory Tract Infections/microbiology
5.
Mol Pharm ; 12(8): 2604-17, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-25974285

ABSTRACT

Inhaled antivirulence drugs are currently considered a promising therapeutic option to treat Pseudomonas aeruginosa lung infections in cystic fibrosis (CF). We have recently shown that the anthelmintic drug niclosamide (NCL) has strong quorum sensing (QS) inhibiting activity against P. aeruginosa and could be repurposed as an antivirulence drug. In this work, we developed dry powders containing NCL nanoparticles that can be reconstituted in saline solution to produce inhalable nanosuspensions. NCL nanoparticles were produced by high-pressure homogenization (HPH) using polysorbate 20 or polysorbate 80 as stabilizers. After 20 cycles of HPH, all formulations showed similar properties in the form of needle-shape nanocrystals with a hydrodynamic diameter of approximately 450 nm and a zeta potential of -20 mV. Nanosuspensions stabilized with polysorbate 80 at 10% w/w to NCL (T80_10) showed an optimal solubility profile in simulated interstitial lung fluid. T80_10 was successfully dried into mannitol-based dry powder by spray drying. Dry powder (T80_10 DP) was reconstituted in saline solution and showed optimal in vitro aerosol performance. Both T80_10 and T80_10 DP were able to inhibit P. aeruginosa QS at NCL concentrations of 2.5-10 µM. NCL, and these formulations did not significantly affect the viability of CF bronchial epithelial cells in vitro at microbiologically active concentrations (i.e., ≤10 µM). In vivo acute toxicity studies in rats confirmed no observable toxicity of the NCL T80_10 DP formulation upon intratracheal administration at a concentration 100-fold higher than the anti-QS activity concentration. These preliminary results suggest that NCL repurposed in the form of inhalable nanosuspensions has great potential for the local treatment of P. aeruginosa lung infections as in the case of CF patients.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Drug Repositioning , Lung Diseases/drug therapy , Niclosamide/administration & dosage , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Administration, Inhalation , Animals , Anti-Bacterial Agents/chemistry , Chemistry, Pharmaceutical , Drug Evaluation, Preclinical , Drug Repositioning/trends , Lung Diseases/microbiology , Lung Diseases/pathology , Male , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Niclosamide/chemistry , Powders , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/pathogenicity , Rats , Rats, Wistar , Virulence/drug effects
6.
Pharmaceutics ; 16(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38543241

ABSTRACT

Nowadays, the interest in research towards the local administration of drugs via the inhalation route is growing as it enables the direct targeting of the lung tissue, at the same time reducing systemic side effects. This is of great significance in the era of nucleic acid therapeutics and personalized medicine for the local treatment of severe lung diseases. However, the success of any inhalation therapy is driven by a delicate interplay of factors, such as the physiochemical profile of the payload, formulation, inhalation device, aerodynamic properties, and interaction with the lung fluids. The development of drug delivery systems tailored to the needs of this administration route is central to its success and to revolutionize the treatment of respiratory diseases. With this review, we aim to provide an up-to-date overview of advances in the development of nanoparticulate carriers for drug delivery to the lung tissue, with special regard concerning lipid and polymer-based nanocarriers (NCs). Starting from the biological barriers that the anatomical structure of the lung imposes, and that need to be overcome, the current strategies to achieve efficient lung delivery and the best support for the success of NCs for inhalation are highlighted.

7.
Adv Drug Deliv Rev ; 203: 115132, 2023 12.
Article in English | MEDLINE | ID: mdl-37918668

ABSTRACT

The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.


Subject(s)
Leukodystrophy, Globoid Cell , Lysosomal Storage Diseases , Humans , Leukodystrophy, Globoid Cell/drug therapy , Leukodystrophy, Globoid Cell/genetics , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Nanomedicine , Brain/metabolism , Blood-Brain Barrier/metabolism , Lysosomal Storage Diseases/drug therapy
8.
Pharmaceutics ; 15(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37111733

ABSTRACT

Inhaled corticosteroids are the mainstay in the management of lung inflammation associated to chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Nonetheless, available inhalation products are mostly short-acting formulations that require frequent administrations and do not always produce the desired anti-inflammatory effects. In this work, the production of inhalable beclomethasone dipropionate (BDP) dry powders based on polymeric particles was attempted. As starting material, the PHEA-g-RhB-g-PLA-g-PEG copolymer was chosen, obtained by grafting 0.6, 2.4 and 3.0 mol%, respectively, of rhodamine (RhB), polylactic acid (PLA) and polyethylene glycol 5000 (PEG) on alpha,beta-poly(N-2-hydroxyethyl)DL-aspartamide (PHEA). The drug was loaded into the polymeric particles (MP) as an inclusion complex (CI) with hydroxypropyl-cyclodextrin (HP-ß-Cyd) (at a stoichiometric ratio of 1:1) or as free form. The spray-drying (SD) process to produce MPs was optimized by keeping the polymer concentration (0.6 wt/vol%) constant in the liquid feed and by varying other parameters such as the drug concentration. The theoretical aerodynamic diameter (daer) values among the MPs are comparable and potentially suitable for inhalation, as confirmed also through evaluation of the experimental mass median aerodynamic diameter (MMADexp). BDP shows a controlled release profile from MPs that is significantly higher (more than tripled) than from Clenil®. In vitro tests on bronchial epithelial cells (16HBE) and adenocarcinomic human alveolar basal epithelial cells (A549) showed that all the MP samples (empty or drug-loaded) were highly biocompatible. None of the systems used induced apoptosis or necrosis. Moreover, the BDP loaded into the particles (BDP-Micro and CI-Micro) was more efficient than free BDP to counteract the effects of cigarette smoke and LPS on release of IL-6 and IL-8.

9.
Int J Pharm ; 629: 122400, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36384182

ABSTRACT

The potential of intra-venous gallium nitrate (GaN) administration against Pseudomonas aeruginosa pneumonia was recently demonstrated in mice and in cystic fibrosis (CF) patients. Likewise, the added value of direct lung delivery of Ga(III) has been shown in rats. Therefore, the design of a drug delivery system specifically engineered for Ga(III) inhalation is imperative to improve its accumulation in lungs. To this purpose, Ga(III) was efficiently encapsulated into hyaluronic acid/chitosan nanoparticles (Ga_HA/CS NPs), whose features were tuned to facilitate access to the target by overcoming mucus and biofilm surrounding bacteria. Then, to improve in vivo lung deposition, Ga_HA/CS NPs were engineered into mannitol-based NEM (Ga_Man NEM). The powders showed optimal in vitro aerosol performance, and sustained release kinetics in lung lining fluids. Moreover, good tolerability and antimicrobial properties were shown in vitro. Intratracheal insufflation of Ga_Man NEM in rats resulted in a significant improvement of Ga(III) persistence in the lungs coupled to a lower Ga(III) concentration in plasma and urine, compared to GaN solution. Noteworthy, the developed formulation significantly modifies the unfavorable Ga(III) kinetic increasing the Ga(III) to the lung and preventing Ga(III) accumulation in the kidney, key responsible for adverse effects, conclusively demonstrating the benefit of Ga_Man NEM to exploit the therapeutic effect of Ga(III) via inhalation route.


Subject(s)
Cystic Fibrosis , Gallium , Pneumonia, Bacterial , Humans , Male , Rats , Mice , Animals , Pneumonia, Bacterial/drug therapy , Lung
10.
ACS Appl Mater Interfaces ; 14(6): 7565-7578, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35107987

ABSTRACT

Inhaled siRNA therapy has a unique potential for treatment of severe lung diseases, such as cystic fibrosis (CF). Nevertheless, a drug delivery system tackling lung barriers is mandatory to enhance gene silencing efficacy in the airway epithelium. We recently demonstrated that lipid-polymer hybrid nanoparticles (hNPs), comprising a poly(lactic-co-glycolic) acid (PLGA) core and a lipid shell of dipalmitoyl phosphatidylcholine (DPPC), may assist the transport of the nucleic acid cargo through mucus-covered human airway epithelium. To study in depth the potential of hNPs for siRNA delivery to the lungs and to investigate the hypothesized benefit of PEGylation, here, an siRNA pool against the nuclear factor-κB (siNFκB) was encapsulated inside hNPs, endowed with a non-PEGylated (DPPC) or a PEGylated (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) or DSPE-PEG) lipid shell. Resulting hNPs were tested for their stability profiles and transport properties in artificial CF mucus, mucus collected from CF cells, and sputum samples from a heterogeneous and representative set of CF patients. Initial information on hNP properties governing their interaction with airway mucus was acquired by small-angle X-ray scattering (SAXS) studies in artificial and cellular CF mucus. The diffusion profiles of hNPs through CF sputa suggested a crucial role of lung colonization of the corresponding donor patient, affecting the mucin type and content of the sample. Noteworthy, PEGylation did not boost mucus penetration in complex and sticky samples, such as CF sputa from patients with polymicrobial colonization. In parallel, in vitro cell uptake studies performed on mucus-lined Calu-3 cells grown at the air-liquid interface (ALI) confirmed the improved ability of non-PEGylated hNPs to overcome mucus and cellular lung barriers. Furthermore, effective in vitro NFκB gene silencing was achieved in LPS-stimulated 16HBE14o- cells. Overall, the results highlight the potential of non-PEGylated hNPs as carriers for pulmonary delivery of siRNA for local treatment of CF lung disease. Furthermore, this study provides a detailed understanding of how distinct models may provide different information on nanoparticle interaction with the mucus barrier.


Subject(s)
Cystic Fibrosis , Nanoparticles , Cystic Fibrosis/drug therapy , Humans , Lung , Mucus , Polymers/pharmacology , RNA, Small Interfering/pharmacology , Scattering, Small Angle , X-Ray Diffraction
11.
Bioeng Transl Med ; 6(2): e10213, 2021 May.
Article in English | MEDLINE | ID: mdl-33786376

ABSTRACT

Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nano-delivery system for therapeutic nucleic acids. The great effort put in the development of ionizable lipids with increased in vivo potency brought LNPs from the laboratory benches to the FDA approval of patisiran in 2018 and the ongoing clinical trials for mRNA-based vaccines against SARS-CoV-2. Despite these success stories, several challenges remain in RNA delivery, including what is known as "endosomal escape." Reaching the cytosol is mandatory for unleashing the therapeutic activity of RNA molecules, as their accumulation in other intracellular compartments would simply result in efficacy loss. In LNPs, the ability of ionizable lipids to form destabilizing non-bilayer structures at acidic pH is recognized as the key for endosomal escape and RNA cytosolic delivery. This is motivating a surge in studies aiming at designing novel ionizable lipids with improved biodegradation and safety profiles. In this work, we describe the journey of RNA-loaded LNPs across multiple intracellular barriers, from the extracellular space to the cytosol. In silico molecular dynamics modeling, in vitro high-resolution microscopy analyses, and in vivo imaging data are systematically reviewed to distill out the regulating mechanisms underlying the endosomal escape of RNA. Finally, a comparison with strategies employed by enveloped viruses to deliver their genetic material into cells is also presented. The combination of a multidisciplinary analytical toolkit for endosomal escape quantification and a nature-inspired design could foster the development of future LNPs with improved cytosolic delivery of nucleic acids.

12.
Nanomaterials (Basel) ; 9(7)2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31288448

ABSTRACT

Glioblastoma multiforme is a devastating disease that has attracted enormous attention due to poor prognosis and high recurrence. Small interfering RNA (siRNA) in principle offers a promising therapeutic approach by the downregulation of disease-related genes via RNA interference. For efficient siRNA delivery to target sites, cationic polymers are often used in preclinical studies for the protection of siRNA and complex formation based on electrostatic interactions. In an effort to develop biocompatible and efficient nanocarriers with a translational outlook for optimal gene silencing at reduced toxicity, we synthesized two sets of nylon-3 copolymers with variable cationic content (DM or NM monomer) and hydrophobic subunits (CP monomer) and evaluated their suitability for in vitro siRNA delivery into glioblastoma cells. DM0.4/CP0.6 and NM0.4/CP0.6 polymers with similar subunit ratios were synthesized to compare the effect of different cationic subunits. Additionally, we utilized NM0.2/CP0.8 polymers to evaluate the impact of the different hydrophobic content in the polymer chain. The siRNA condensation ability and polymer-siRNA complex stability was evaluated by unmodified and modified SYBR gold assays, respectively. Further physicochemical characteristics, e.g., particle size and surface charge, were evaluated by dynamic light scattering and laser Doppler anemometry, whereas a relatively new method for polyplex size distribution analysis-tunable resistive pulse sensing-was additionally developed and compared to DLS measurements. Transfection efficiencies, the route of cell internalization, and protein knockdown abilities in glioblastoma cells were investigated by flow cytometry. Furthermore, cellular tolerability was evaluated by MTT and LDH assays. All the polymers efficiently condensed siRNA at N/P ratios of three, whereas polymers with NM cationic subunits demonstrated smaller particle size and lower polyplex stability. Furthermore, NM0.2/CP0.8 polyplexes with the highest hydrophobic content displayed significantly higher cellular internalization in comparison to more cationic formulations and successful knockdown capabilities. Detailed investigations of the cellular uptake route demonstrated that these polyplexes mainly follow clathrin-mediated endocytotic uptake mechanisms, implying high interaction capacity with cellular membranes. Taken together with conducive toxicity profiles, highly hydrophobic nylon-3 polymers provide an appropriate siRNA delivery agent for the potential treatment of glioblastoma.

13.
Eur J Pharm Biopharm ; 143: 61-69, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31445157

ABSTRACT

Localized aerosol delivery of gene therapies is a promising treatment of severe pulmonary diseases including lung cancer, cystic fibrosis, COPD and asthma. The administration of drugs by inhalation features multiple benefits including an enhanced patient acceptability and compliance. The application of a spray dried powder formulation has advantages over solutions due to their increased stability and shelf life. Furthermore, optimal sizes of the powder can be obtained by spray drying to allow a deep lung deposition. The present study optimized the parameters involved with spray drying polyplexes formed by polyethylenimine (PEI) and nucleic acids in inert excipients to generate a nano-embedded microparticle (NEM) powder with appropriate aerodynamic diameter. Furthermore, the effects of the excipient matrix used to generate the NEM powder on the biological activity of the nucleic acid and the ability to recover the embedded nanoparticles was investigated. The study showed that bioactivity and nucleic acid integrity was preserved after spray drying, and that polyplexes could be reconstituted from the dry powders made with trehalose but not mannitol as a stabilizer. Scanning electron microscopy (SEM) showed trehalose formulations that formed fused, lightly corrugated spherical particles in the range between 1 and 5 µm, while mannitol formulations had smooth surfaces and consisted of more defined particles. After redispersion of the microparticles in water, polyplex dispersions are obtained that are comparable to the initial formulations before spray drying. Cellular uptake and transfection studies conducted in lung adenocarcinoma cells show that redispersed trehalose particles performed similar to or better than polyplexes that were not spray dried. A method for quantifying polymer and nucleic acid loss following spray drying was developed in order to ensure that equal nucleic acid amounts were used in all in vitro experiments. The results confirm that spray dried NEM formulations containing nucleic acids can be prepared with characteristics known to be optimal for inhalation therapy.


Subject(s)
Nanoparticles/chemistry , Nucleic Acids/chemistry , Polyethyleneimine/chemistry , Powders/chemistry , A549 Cells , Administration, Inhalation , Aerosols/chemistry , Calorimetry, Differential Scanning/methods , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Desiccation/methods , Excipients/chemistry , Humans , Mannitol/chemistry , Microscopy, Electron, Scanning/methods , Particle Size , Trehalose/chemistry
14.
Int J Pharm ; 558: 128-142, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30639218

ABSTRACT

In pharmaceutical technology, lipids and polymers are considered pillar excipients for the fabrication of most dosage forms, irrespective of the administration route. They play various roles ranging from support vehicles to release rate modifiers, stabilizers, solubilizers, permeation enhancers and transfection agents. Focusing on selected applications, which were discussed at the Annual Scientific Meeting of the Gattefossé Foundation 2018, this manuscript recapitulates the fundamental roles of these two important classes of excipients, either employed alone or in combination, and provides insight on their functional properties in various types of drug formulations. Emphasis is placed on oral formulations for the administration of active pharmaceutical ingredients with low aqueous solubilities or poor permeation properties. Additionally, this review article covers the use of lipids and polymers in the design of colloidal injectable delivery systems, and as substrates in additive manufacturing technologies for the production of tailor-made dosage forms.


Subject(s)
Lipids/chemistry , Polymers/chemistry , Administration, Oral , Animals , Dosage Forms , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Excipients/chemistry , Humans , Lipids/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polymers/administration & dosage , Printing, Three-Dimensional , Technology, Pharmaceutical
15.
Adv Healthc Mater ; 7(14): e1701398, 2018 07.
Article in English | MEDLINE | ID: mdl-29719138

ABSTRACT

In order to overcome the main disadvantages of conventional cancer therapies, which prove to be inadequate because of their lack of selectivity, the development of targeted delivery systems is one of the main focuses in anticancer research. It is repeatedly shown that decorating the surface of nanocarriers with high-affinity targeting ligands, such as peptides or small molecules, is an effective way to selectively deliver therapeutics by enhancing their specific cellular uptake via the binding between a specific receptor and the nanosystems. Nowadays, the need of finding new potential biological targets with a high endocytic efficiency as well as a low tendency to mutate is urgent and, in this context, mannose and mannose-6-phosphate receptors appear promising to target anticancer drugs to cells where their expression is upregulated. Moreover, they open the path to encouraging applications in immune-based and gene therapies as well as in theragnostic purposes. In this work, the potential of mannose- and mannose-6-phosphate-targeted delivery systems in cancer therapy is discussed, emphasizing their broad application both in direct treatments against cancer cells with conventional chemotherapeutics or by gene therapy and also their encouraging capabilities in immunotherapy and diagnostics purposes.


Subject(s)
Mannose/metabolism , Mannosephosphates/metabolism , Receptor, IGF Type 2/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Immunotherapy , Nanomedicine/methods , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/therapy
16.
Pharmaceutics ; 10(4)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445705

ABSTRACT

ß-Sitosterol (ß-Sit) is a dietary phytosterol with demonstrated anticancer activity against a panel of cancers, but its poor solubility in water limits its bioavailability and therapeutic efficacy. In this study, poly(lactide-co-glycolic acid) (PLGA) and block copolymers of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) were used to encapsulate ß-Sit into nanoparticles with the aim of enhancing its in vitro anticancer activity. ß-Sitosterol-loaded PLGA and PEG-PLA nanoparticles (ß-Sit-PLGA and ß-Sit-PEG-PLA) were prepared by using a simple emulsion-solvent evaporation technique. The nanoparticles were characterized for size, particle size distribution, surface charge, and encapsulation efficiency. Their cellular uptake and antiproliferative activity was evaluated against MCF-7 and MDA-MB-231 human breast cancer cells using flow cytometry and MTT assays, respectively. ß-Sit-PLGA and ß-Sit-PEG-PLA nanoparticles were spherical in shape with average particle sizes of 215.0 ± 29.7 and 240.6 ± 23.3 nm, a zeta potential of -13.8 ± 1.61 and -23.5 ± 0.27 mV, respectively, and with narrow size distribution. The encapsulation efficiency of ß-Sit was 62.89 ± 4.66 and 51.83 ± 19.72 % in PLGA and PEG-PLA nanoparticles, respectively. In vitro release in phosphate-buffered saline (PBS) and PBS/with 0.2% Tween 20 showed an initial burst release, followed by a sustained release for 408 h. ß-Sit-PLGA nanoparticles were generally stable in a protein-rich medium, whereas ß-Sit-PEG-PLA nanoparticles showed a tendency to aggregate. Flow cytometry analysis (FACS) indicated that ß-Sit-PLGA nanoparticles were efficiently taken up by the cells in contrast to ß-Sit-PEG-PLA nanoparticles. ß-Sit-PLGA nanoparticles were therefore selected to evaluate antiproliferative activity. Cell viability was inhibited by up to 80% in a concentration range of 6.64⁻53.08 µg/mL compared to the untreated cells. Taken together, encapsulation of ß-Sitosterol in PLGA nanoparticles is a promising strategy to enhance its anticancer activity against breast cancer cells.

17.
J Aerosol Med Pulm Drug Deliv ; 31(3): 170-181, 2018 06.
Article in English | MEDLINE | ID: mdl-29035132

ABSTRACT

BACKGROUND: Nowadays, the downregulation of genes involved in the pathogenesis of severe lung diseases through local siRNA delivery appears an interesting therapeutic approach. In this study, we propose novel hybrid lipid-polymer nanoparticles (hNPs) consisting of poly(lactic-co-glycolic) acid (PLGA) and dipalmitoyl phosphatidylcholine (DPPC) as siRNA inhalation system. METHODS: A panel of DPPC/PLGA hNPs was prepared by emulsion/solvent diffusion and fully characterized. A combination of model siRNAs against the sodium transepithelial channel (ENaC) was entrapped in optimized hNPs comprising or not poly(ethylenimine) (PEI) as third component. siRNA-loaded hNPs were characterized for encapsulation efficiency, release kinetics, aerodynamic properties, and stability in artificial mucus (AM). The fate and cytotoxicity of hNPs upon aerosolization on a triple cell co-culture model (TCCC) mimicking human epithelial airway barrier were assessed. Finally, the effect of siRNA-loaded hNPs on ENaC protein expression at 72 hours was evaluated in A549 cells. RESULTS: Optimized muco-inert hNPs encapsulating model siRNA with high efficiency were produced. The developed hNPs displayed a hydrodynamic diameter of ∼150 nm, a low polydispersity index, a negative ζ potential close to -25 mV, and a peculiar triphasic siRNA release lasting for 5 days, which slowed down in the presence of PEI. siRNA formulations showed optimal in vitro aerosol performance after delivery with a vibrating mesh nebulizer. Furthermore, small-angle X-ray scattering analyses highlighted an excellent stability upon incubation with AM, confirming the potential of hNPs for direct aerosolization on mucus-lined airways. Studies in TCCC confirmed that fluorescent hNPs are internalized inside airway epithelial cells and do not exert any cytotoxic or acute proinflammatory effect. Finally, a prolonged inhibition of ENaC protein expression was observed in A549 cells upon treatment with siRNA-loaded hNPs. CONCLUSIONS: Results demonstrate the great potential of hNPs as carriers for pulmonary delivery of siRNA, prompting toward investigation of their therapeutic effectiveness in severe lung diseases.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Lung/metabolism , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , RNA, Small Interfering/administration & dosage , 1,2-Dipalmitoylphosphatidylcholine/administration & dosage , 1,2-Dipalmitoylphosphatidylcholine/pharmacology , Aerosols , Cells, Cultured , Humans , Nanoparticles/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Scattering, Small Angle
18.
J Colloid Interface Sci ; 454: 112-20, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26004575

ABSTRACT

The aim of this work was to investigate the potential of small nanoparticles (NPs) made of a poly(ethylene glycol)-poly(ε-caprolactone)-amphiphilic diblock copolymer (PEG-b-PCL, PEG=2kDa and PCL=4.2kDa) as drug carrier system through the skin. Zinc(II) phthalocyanine (ZnPc), selected as lipophilic and fluorescent model molecule, was loaded inside NPs by a melting/sonication procedure. Loaded NPs with a hydrodynamic diameter around 60nm, a slightly negative zeta potential and a ZnPc entrapment dependent on polymer/ZnPc ratio were obtained. Spectroscopic investigations evidenced that ZnPc was entrapped in monomeric form maintaining its emission properties. The transport of ZnPc through porcine ear skin was evaluated on Franz-type diffusion cells after treatment with different vehicles (water or PEG 0.4kDa) containing free ZnPc or ZnPc-loaded NPs without and with (2-hydroxypropyl)-ß-cyclodextrin (HPßCD) as permeation enhancer. Independently of the sample tested, ZnPc was transported in the skin without reaching receptor compartment. On the other hand, ZnPc was found in the skin in large amount and also in the viable epidermis when delivered through NPs associated with HPßCD, especially in conditions limiting water evaporation. Fluorescence images of skin samples after 24h of permeation were in line with ZnPc dosage in the skin and demonstrated the ability of NPs covalently tagged with rhodamine to penetrate the skin and to locate in the intercellular spaces. Insight into skin chemical properties upon application of NPs by confocal Raman spectroscopy demonstrated that HPßCD caused an alteration of water profile in the skin, highly reducing the degree of hydration at stratum corneum/viable epidermis interface which can promote NP transport. Taken together, these results highlight PEG-b-PCL NPs coupled with HPßCD as a novel vehicle for the skin delivery of highly lipophilic compounds paving the way to several applications.


Subject(s)
Drug Carriers , Lactones/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Skin/drug effects , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Animals , Biological Transport , Drug Compounding , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Indoles/chemistry , Indoles/metabolism , Isoindoles , Lactones/pharmacology , Nanoparticles/metabolism , Nanoparticles/ultrastructure , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Particle Size , Permeability/drug effects , Polyethylene Glycols/pharmacology , Skin/metabolism , Sonication , Static Electricity , Swine , Tissue Culture Techniques , Water/chemistry , Water/metabolism , Zinc Compounds , beta-Cyclodextrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL