Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816615

ABSTRACT

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV Infections , HIV-1 , Macaca mulatta , Animals , Humans , HIV Envelope Protein gp41/immunology , HIV Antibodies/immunology , Mice , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Vaccination , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , Nanoparticles/chemistry , Female , Complementarity Determining Regions/immunology , Epitopes/immunology
2.
Cell ; 177(5): 1153-1171.e28, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31080066

ABSTRACT

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , HIV Antibodies/immunology , HIV-1/immunology , Immunization, Passive , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/pathology , Female , Germinal Center/pathology , Germinal Center/virology , Macaca mulatta , Male , T-Lymphocytes, Helper-Inducer/pathology , env Gene Products, Human Immunodeficiency Virus/immunology
4.
Immunity ; 55(10): 1856-1871.e6, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35987201

ABSTRACT

Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.


Subject(s)
B-Lymphocytes , Germinal Center , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antigens , Epitopes , Immunity, Humoral , Mice
6.
Immunity ; 51(5): 915-929.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31732167

ABSTRACT

The elicitation of broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer remains a major vaccine challenge. Most cross-conserved protein determinants are occluded by self-N-glycan shielding, limiting B cell recognition of the underlying polypeptide surface. The exceptions to the contiguous glycan shield include the conserved receptor CD4 binding site (CD4bs) and glycoprotein (gp)41 elements proximal to the furin cleavage site. Accordingly, we performed heterologous trimer-liposome prime:boosting in rabbits to drive B cells specific for cross-conserved sites. To preferentially expose the CD4bs to B cells, we eliminated proximal N-glycans while maintaining the native-like state of the cleavage-independent NFL trimers, followed by gradual N-glycan restoration coupled with heterologous boosting. This approach successfully elicited CD4bs-directed, cross-neutralizing Abs, including one targeting a unique glycan-protein epitope and a bNAb (87% breadth) directed to the gp120:gp41 interface, both resolved by high-resolution cryoelectron microscopy. This study provides proof-of-principle immunogenicity toward eliciting bNAbs by vaccination.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Liposomes , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4 Antigens/chemistry , CD4 Antigens/immunology , CD4 Antigens/metabolism , Complement C3/immunology , Complement C3/metabolism , Cross-Priming/immunology , Epitopes/immunology , Glycosylation , HIV Infections/virology , Humans , Immunoglobulin G/immunology , Models, Molecular , Neutralization Tests , Polysaccharides/immunology , Polysaccharides/metabolism , Protein Binding , Protein Conformation , Rabbits , env Gene Products, Human Immunodeficiency Virus/administration & dosage , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
7.
Immunity ; 50(1): 241-252.e6, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30552025

ABSTRACT

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ∼1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV/physiology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Humans , Macaca mulatta , Vaccination
8.
Nature ; 609(7929): 998-1004, 2022 09.
Article in English | MEDLINE | ID: mdl-36131022

ABSTRACT

Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (BGC) cells that last for at least 6 months. A 186-fold increase in BGC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of BGC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding BGC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells1,2. Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous BGC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses.


Subject(s)
Antibody Affinity , B-Lymphocytes , Cell Movement , Clone Cells , Germinal Center , HIV Antibodies , Immunization , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibody Affinity/genetics , Antibody Affinity/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Clone Cells/cytology , Clone Cells/immunology , Epitopes, B-Lymphocyte/immunology , Gene Expression Profiling , Germinal Center/cytology , Germinal Center/immunology , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Humans , Immunization, Secondary , Macaca mulatta/immunology , Macaca mulatta/virology , Memory B Cells/cytology , Memory B Cells/immunology , Single-Cell Analysis , Somatic Hypermutation, Immunoglobulin/genetics , Somatic Hypermutation, Immunoglobulin/immunology , Time Factors , env Gene Products, Human Immunodeficiency Virus/administration & dosage , env Gene Products, Human Immunodeficiency Virus/immunology
9.
Immunity ; 49(2): 288-300.e8, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30097292

ABSTRACT

Characterizing polyclonal antibody responses via currently available methods is inherently complex and difficult. Mapping epitopes in an immune response is typically incomplete, which creates a barrier to fully understanding the humoral response to antigens and hinders rational vaccine design efforts. Here, we describe a method of characterizing polyclonal responses by using electron microscopy, and we applied this method to the immunization of rabbits with an HIV-1 envelope glycoprotein vaccine candidate, BG505 SOSIP.664. We detected known epitopes within the polyclonal sera and revealed how antibody responses evolved during the prime-boosting strategy to ultimately result in a neutralizing antibody response. We uncovered previously unidentified epitopes, including an epitope proximal to one recognized by human broadly neutralizing antibodies as well as potentially distracting non-neutralizing epitopes. Our method provides an efficient and semiquantitative map of epitopes that are targeted in a polyclonal antibody response and should be of widespread utility in vaccine and infection studies.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , Epitope Mapping/methods , Epitopes/immunology , HIV Antibodies/immunology , HIV-1/immunology , Microscopy, Electron/methods , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibody Formation/immunology , Cell Line , Female , HEK293 Cells , HIV Infections/immunology , HIV Infections/prevention & control , Humans , Immunization , Immunoglobulin Fab Fragments/immunology , Rabbits , Recombinant Proteins/immunology
10.
Immunity ; 46(4): 690-702, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423342

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to HIV delineate vaccine targets and are prophylactic and therapeutic agents. Some of the most potent bnAbs target a quaternary epitope at the apex of the surface HIV envelope (Env) trimer. Using cryo-electron microscopy, we solved the atomic structure of an apex bnAb, PGT145, in complex with Env. We showed that the long anionic HCDR3 of PGT145 penetrated between glycans at the trimer 3-fold axis, to contact peptide residues from all three Env protomers, and thus explains its highly trimer-specific nature. Somatic hypermutation in the other CDRs of PGT145 were crucially involved in stabilizing the structure of the HCDR3, similar to bovine antibodies, to aid in recognition of a cluster of conserved basic residues hypothesized to facilitate trimer disassembly during viral entry. Overall, the findings exemplify the creative solutions that the human immune system can evolve to recognize a conserved motif buried under a canopy of glycans.


Subject(s)
Antibodies, Neutralizing/chemistry , Protein Domains , Protein Multimerization , Protein Structure, Secondary , env Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Sequence , Anions/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , HEK293 Cells , HIV Antibodies/chemistry , HIV Antibodies/immunology , HIV Antibodies/metabolism , HIV-1/immunology , HIV-1/metabolism , Humans , Models, Molecular , Polysaccharides/chemistry , Polysaccharides/immunology , Polysaccharides/metabolism , Protein Binding/immunology , Sequence Homology, Amino Acid , Surface Plasmon Resonance , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
11.
Immunity ; 46(6): 1073-1088.e6, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28636956

ABSTRACT

The development of stabilized recombinant HIV envelope trimers that mimic the virion surface molecule has increased enthusiasm for a neutralizing antibody (nAb)-based HIV vaccine. However, there is limited experience with recombinant trimers as immunogens in nonhuman primates, which are typically used as a model for humans. Here, we tested multiple immunogens and immunization strategies head-to-head to determine their impact on the quantity, quality, and kinetics of autologous tier 2 nAb development. A bilateral, adjuvanted, subcutaneous immunization protocol induced reproducible tier 2 nAb responses after only two immunizations 8 weeks apart, and these were further enhanced by a third immunization with BG505 SOSIP trimer. We identified immunogens that minimized non-neutralizing V3 responses and demonstrated that continuous immunogen delivery could enhance nAb responses. nAb responses were strongly associated with germinal center reactions, as assessed by lymph node fine needle aspiration. This study provides a framework for preclinical and clinical vaccine studies targeting nAb elicitation.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/therapeutic use , Germinal Center/immunology , HIV Antibodies/therapeutic use , HIV Infections/therapy , HIV-1/immunology , Animals , Cells, Cultured , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Germinal Center/virology , HIV Infections/immunology , Humans , Immunization , Injections, Subcutaneous , Primates , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology
12.
Proc Natl Acad Sci U S A ; 120(1): e2217883120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574685

ABSTRACT

Antibody heavy chain (HC) and light chain (LC) variable region exons are assembled by V(D)J recombination. V(D)J junctional regions encode complementarity-determining-region 3 (CDR3), an antigen-contact region immensely diversified through nontemplated nucleotide additions ("N-regions") by terminal deoxynucleotidyl transferase (TdT). HIV-1 vaccine strategies seek to elicit human HIV-1 broadly neutralizing antibodies (bnAbs), such as the potent CD4-binding site VRC01-class bnAbs. Mice with primary B cells that express receptors (BCRs) representing bnAb precursors are used as vaccination models. VRC01-class bnAbs uniformly use human HC VH1-2 and commonly use human LCs Vκ3-20 or Vκ1-33 associated with an exceptionally short 5-amino-acid (5-aa) CDR3. Prior VRC01-class models had nonphysiological precursor levels and/or limited precursor diversity. Here, we describe VRC01-class rearranging mice that generate more physiological primary VRC01-class BCR repertoires via rearrangement of VH1-2, as well as Vκ1-33 and/or Vκ3-20 in association with diverse CDR3s. Human-like TdT expression in mouse precursor B cells increased LC CDR3 length and diversity and also promoted the generation of shorter LC CDR3s via N-region suppression of dominant microhomology-mediated Vκ-to-Jκ joins. Priming immunization with eOD-GT8 60mer, which strongly engages VRC01 precursors, induced robust VRC01-class germinal center B cell responses. Vκ3-20-based responses were enhanced by N-region addition, which generates Vκ3-20-to-Jκ junctional sequence combinations that encode VRC01-class 5-aa CDR3s with a critical E residue. VRC01-class-rearranging models should facilitate further evaluation of VRC01-class prime and boost immunogens. These new VRC01-class mouse models establish a prototype for the generation of vaccine-testing mouse models for other HIV-1 bnAb lineages that employ different HC or LC Vs.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Vaccines , Mice , Humans , Animals , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , HIV-1/genetics , HIV Antibodies , DNA Nucleotidylexotransferase , Complementarity Determining Regions/genetics , HIV Infections/prevention & control
13.
Proc Natl Acad Sci U S A ; 119(29): e2205784119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35767670

ABSTRACT

Many neutralizing antibodies (nAbs) elicited to ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through natural infection and vaccination have reduced effectiveness to SARS-CoV-2 variants. Here, we show that therapeutic antibody ADG20 is able to neutralize SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.1.529) as well as other SARS-related coronaviruses. We delineate the structural basis of this relatively escape-resistant epitope that extends from one end of the receptor binding site (RBS) into the highly conserved CR3022 site. ADG20 can then benefit from high potency through direct competition with ACE2 in the more variable RBS and interaction with the more highly conserved CR3022 site. Importantly, antibodies that are able to target this site generally neutralize a broad range of VOCs, albeit with reduced potency against Omicron. Thus, this conserved and vulnerable site can be exploited for the design of universal vaccines and therapeutic antibodies.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Epitopes/immunology , Humans , Neutralization Tests , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
15.
J Virol ; 96(1): e0155221, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34669426

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) trimeric envelope glycoprotein (Env) is heavily glycosylated, creating a dense glycan shield that protects the underlying peptidic surface from antibody recognition. The absence of conserved glycans, due to missing potential N-linked glycosylation sites (PNGS), can result in strain-specific, autologous neutralizing antibody (NAb) responses. Here, we sought to gain a deeper understanding of the autologous neutralization by introducing holes in the otherwise dense glycan shields of the AMC011 and AMC016 SOSIP trimers. Specifically, when we knocked out the N130 and N289 glycans, which are absent from the well-characterized B41 SOSIP trimer, we observed stronger autologous NAb responses. We also analyzed the highly variable NAb responses induced in rabbits by diverse SOSIP trimers from subtypes A, B, and C. Statistical analysis, using linear regression, revealed that the cumulative area exposed on a trimer by glycan holes correlates with the magnitude of the autologous NAb response. IMPORTANCE Forty years after the first description of HIV-1, the search for a protective vaccine is still ongoing. The sole target for antibodies that can neutralize the virus are the trimeric envelope glycoproteins (Envs) located on the viral surface. The glycoprotein surface is covered with glycans that shield off the underlying protein components from recognition by the immune system. However, the Env trimers of some viral strains have holes in the glycan shield. Immunized animals developed antibodies against such glycan holes. These antibodies are generally strain specific. Here, we sought to gain a deeper understanding of what drives these specific immune responses. First, we show that strain-specific neutralizing antibody responses can be increased by creating artificial holes in the glycan shield. Second, when studying a diverse set of Env trimers with different characteristics, we found that the surface area of the glycan holes contributes prominently to the induction of strain-specific neutralizing antibodies.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , Polysaccharides/metabolism , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism , AIDS Vaccines/immunology , Amino Acids/chemistry , Amino Acids/immunology , Amino Acids/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , Antigens, Viral/immunology , Glycosylation , HIV Antibodies/immunology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/genetics , Host-Pathogen Interactions , Humans , Immunization , Models, Molecular , Protein Conformation , Protein Multimerization/immunology , Rabbits , Sequence Deletion , Structure-Activity Relationship , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
16.
PLoS Pathog ; 17(2): e1009257, 2021 02.
Article in English | MEDLINE | ID: mdl-33556148

ABSTRACT

Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , Polysaccharides/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Epitopes/immunology , Female , HIV Infections/immunology , HIV Infections/virology , Humans , Immunization , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Vaccination
17.
PLoS Pathog ; 17(4): e1008977, 2021 04.
Article in English | MEDLINE | ID: mdl-33826683

ABSTRACT

Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.


Subject(s)
Antibodies, Neutralizing/blood , Antigens, Viral/blood , HIV Antibodies/blood , HIV-1/immunology , Animals , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV Infections/immunology , Humans , Immunization/methods , Rabbits , Vaccination/methods , env Gene Products, Human Immunodeficiency Virus/immunology
18.
PLoS Pathog ; 17(8): e1009736, 2021 08.
Article in English | MEDLINE | ID: mdl-34432859

ABSTRACT

The development of an effective human immunodeficiency virus (HIV-1) vaccine is a high global health priority. Soluble native-like HIV-1 envelope glycoprotein trimers (Env), including those based on the SOSIP design, have shown promise as vaccine candidates by inducing neutralizing antibody responses against the autologous virus in animal models. However, to overcome HIV-1's extreme diversity a vaccine needs to induce broadly neutralizing antibodies (bNAbs). Such bNAbs can protect non-human primates (NHPs) and humans from infection. The prototypic BG505 SOSIP.664 immunogen is based on the BG505 env sequence isolated from an HIV-1-infected infant from Kenya who developed a bNAb response. Studying bNAb development during natural HIV-1 infection can inform vaccine design, however, it is unclear to what extent vaccine-induced antibody responses to Env are comparable to those induced by natural infection. Here, we compared Env antibody responses in BG505 SOSIP-immunized NHPs with those in BG505 SHIV-infected NHPs, by analyzing monoclonal antibodies (mAbs). We observed three major differences between BG505 SOSIP immunization and BG505 SHIV infection. First, SHIV infection resulted in more clonal expansion and less antibody diversity compared to SOSIP immunization, likely because of higher and/or prolonged antigenic stimulation and increased antigen diversity during infection. Second, while we retrieved comparatively fewer neutralizing mAbs (NAbs) from SOSIP-immunized animals, these NAbs targeted more diverse epitopes compared to NAbs from SHIV-infected animals. However, none of the NAbs, either elicited by vaccination or infection, showed any breadth. Finally, SOSIP immunization elicited antibodies against the base of the trimer, while infection did not, consistent with the base being placed onto the virus membrane in the latter setting. Together these data provide new insights into the antibody response against BG505 Env during infection and immunization and limitations that need to be overcome to induce better responses after vaccination.


Subject(s)
AIDS Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Epitopes/immunology , HIV Infections/immunology , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibody Formation , Antigens, Viral/immunology , HIV Antibodies/immunology , HIV Infections/virology , Humans , Immunization , Infant , Kenya , Primates , Protein Multimerization , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Vaccination
19.
Nature ; 547(7663): 360-363, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28700571

ABSTRACT

For many enveloped viruses, binding to a receptor(s) on a host cell acts as the first step in a series of events culminating in fusion with the host cell membrane and transfer of genetic material for replication. The envelope glycoprotein (Env) trimer on the surface of HIV is responsible for receptor binding and fusion. Although Env can tolerate a high degree of mutation in five variable regions (V1-V5), and also at N-linked glycosylation sites that contribute roughly half the mass of Env, the functional sites for recognition of receptor CD4 and co-receptor CXCR4/CCR5 are conserved and essential for viral fitness. Soluble SOSIP Env trimers are structural and antigenic mimics of the pre-fusion native, surface-presented Env, and are targets of broadly neutralizing antibodies. Thus, they are attractive immunogens for vaccine development. Here we present high-resolution cryo-electron microscopy structures of subtype B B41 SOSIP Env trimers in complex with CD4 and antibody 17b, or with antibody b12, at resolutions of 3.7 Å and 3.6 Å, respectively. We compare these to cryo-electron microscopy reconstructions of B41 SOSIP Env trimers with no ligand or in complex with either CD4 or the CD4-binding-site antibody PGV04 at 5.6 Å, 5.2 Å and 7.4 Å resolution, respectively. Consequently, we present the most complete description yet, to our knowledge, of the CD4-17b-induced intermediate and provide the molecular basis of the receptor-binding-induced conformational change required for HIV-1 entry into host cells. Both CD4 and b12 induce large, previously uncharacterized conformational rearrangements in the gp41 subunits, and the fusion peptide becomes buried in a newly formed pocket. These structures provide key details on the biological function of the type I viral fusion machine from HIV-1 as well as new templates for inhibitor design.


Subject(s)
Allosteric Regulation , Cryoelectron Microscopy , HIV-1/chemistry , HIV-1/ultrastructure , env Gene Products, Human Immunodeficiency Virus/metabolism , env Gene Products, Human Immunodeficiency Virus/ultrastructure , Allosteric Regulation/drug effects , Amino Acid Sequence , Antibodies/chemistry , Antibodies/immunology , Antibodies/pharmacology , Antibodies/ultrastructure , Binding Sites/drug effects , CD4 Antigens/chemistry , CD4 Antigens/metabolism , CD4 Antigens/ultrastructure , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/metabolism , HIV Envelope Protein gp41/ultrastructure , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin Fab Fragments/ultrastructure , Ligands , Models, Molecular , Receptors, CCR5/chemistry , Receptors, CCR5/metabolism , Receptors, HIV/chemistry , Receptors, HIV/metabolism , Receptors, HIV/ultrastructure , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
20.
Proc Natl Acad Sci U S A ; 117(45): 28014-28025, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33093196

ABSTRACT

The dense array of N-linked glycans on the HIV-1 envelope glycoprotein (Env), known as the "glycan shield," is a key determinant of immunogenicity, yet intrinsic heterogeneity confounds typical structure-function analysis. Here, we present an integrated approach of single-particle electron cryomicroscopy (cryo-EM), computational modeling, and site-specific mass spectrometry (MS) to probe glycan shield structure and behavior at multiple levels. We found that dynamics lead to an extensive network of interglycan interactions that drive the formation of higher-order structure within the glycan shield. This structure defines diffuse boundaries between buried and exposed protein surface and creates a mapping of potentially immunogenic sites on Env. Analysis of Env expressed in different cell lines revealed how cryo-EM can detect subtle changes in glycan occupancy, composition, and dynamics that impact glycan shield structure and epitope accessibility. Importantly, this identified unforeseen changes in the glycan shield of Env obtained from expression in the same cell line used for vaccine production. Finally, by capturing the enzymatic deglycosylation of Env in a time-resolved manner, we found that highly connected glycan clusters are resistant to digestion and help stabilize the prefusion trimer, suggesting the glycan shield may function beyond immune evasion.


Subject(s)
HIV-1/immunology , Polysaccharides/metabolism , env Gene Products, Human Immunodeficiency Virus/immunology , Antibodies, Neutralizing/immunology , Antibody Formation , Computer Simulation , Cryoelectron Microscopy/methods , Epitopes/chemistry , Glycosylation , HIV Antibodies/immunology , HIV Envelope Protein gp120/metabolism , HIV Seropositivity , HIV-1/metabolism , Humans , Immune Evasion/immunology , Mass Spectrometry/methods , Models, Molecular , env Gene Products, Human Immunodeficiency Virus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL