Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Publication year range
1.
J Intern Med ; 296(1): 53-67, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38654517

ABSTRACT

BACKGROUND: The Molecular International Prognostic Scoring System (IPSS-M) is the new gold standard for diagnostic outcome prediction in patients with myelodysplastic syndromes (MDS). This study was designed to assess the additive prognostic impact of dynamic transfusion parameters during early follow-up. METHODS: We retrieved complete transfusion data from 677 adult Swedish MDS patients included in the IPSS-M cohort. Time-dependent erythrocyte transfusion dependency (E-TD) was added to IPSS-M features and analyzed regarding overall survival and leukemic transformation (acute myeloid leukemia). A multistate Markov model was applied to assess the prognostic value of early changes in transfusion patterns. RESULTS: Specific clinical and genetic features were predicted for diagnostic and time-dependent transfusion patterns. Importantly, transfusion state both at diagnosis and within the first year strongly predicts outcomes in both lower (LR) and higher-risk (HR) MDSs. In multivariable analysis, 8-month landmark E-TD predicted shorter survival independently of IPSS-M (p < 0.001). A predictive model based on IPSS-M and 8-month landmark E-TD performed significantly better than a model including only IPSS-M. Similar trends were observed in an independent validation cohort (n = 218). Early transfusion patterns impacted both future transfusion requirements and outcomes in a multistate Markov model. CONCLUSION: The transfusion requirement is a robust and available clinical parameter incorporating the effects of first-line management. In MDS, it provides dynamic risk information independently of diagnostic IPSS-M and, in particular, clinical guidance to LR MDS patients eligible for potentially curative therapeutic intervention.


Subject(s)
Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/mortality , Female , Prognosis , Male , Aged , Middle Aged , Sweden , Markov Chains , Aged, 80 and over , Erythrocyte Transfusion , Blood Transfusion , Adult
2.
Stat Med ; 43(6): 1238-1255, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38258282

ABSTRACT

In clinical studies, multi-state model (MSM) analysis is often used to describe the sequence of events that patients experience, enabling better understanding of disease progression. A complicating factor in many MSM studies is that the exact event times may not be known. Motivated by a real dataset of patients who received stem cell transplants, we considered the setting in which some event times were exactly observed and some were missing. In our setting, there was little information about the time intervals in which the missing event times occurred and missingness depended on the event type, given the analysis model covariates. These additional challenges limited the usefulness of some missing data methods (maximum likelihood, complete case analysis, and inverse probability weighting). We show that multiple imputation (MI) of event times can perform well in this setting. MI is a flexible method that can be used with any complete data analysis model. Through an extensive simulation study, we show that MI by predictive mean matching (PMM), in which sampling is from a set of observed times without reliance on a specific parametric distribution, has little bias when event times are missing at random, conditional on the observed data. Applying PMM separately for each sub-group of patients with a different pathway through the MSM tends to further reduce bias and improve precision. We recommend MI using PMM methods when performing MSM analysis with Markov models and partially observed event times.


Subject(s)
Research Design , Humans , Data Interpretation, Statistical , Computer Simulation , Probability , Bias
3.
Res Synth Methods ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772906

ABSTRACT

BACKGROUND: Traditionally, meta-analysis of time-to-event outcomes reports a single pooled hazard ratio assuming proportional hazards (PH). For health technology assessment evaluations, hazard ratios are frequently extrapolated across a lifetime horizon. However, when treatment effects vary over time, an assumption of PH is not always valid. The Royston-Parmar (RP), piecewise exponential (PE), and fractional polynomial (FP) models can accommodate non-PH and provide plausible extrapolations of survival curves beyond observed data. METHODS: Simulation study to assess and compare the performance of RP, PE, and FP models in a Bayesian framework estimating restricted mean survival time difference (RMSTD) at 50 years from a pairwise meta-analysis with evidence of non-PH. Individual patient data were generated from a mixture Weibull distribution. Twelve scenarios were considered varying the amount of follow-up data, number of trials in a meta-analysis, non-PH interaction coefficient, and prior distributions. Performance was assessed through bias and mean squared error. Models were applied to a metastatic breast cancer example. RESULTS: FP models performed best when the non-PH interaction coefficient was 0.2. RP models performed best in scenarios with complete follow-up data. PE models performed well on average across all scenarios. In the metastatic breast cancer example, RMSTD at 50-years ranged from -14.6 to 8.48 months. CONCLUSIONS: Synthesis of time-to-event outcomes and estimation of RMSTD in the presence of non-PH can be challenging and computationally intensive. Different approaches make different assumptions regarding extrapolation and sensitivity analyses varying key assumptions are essential to check the robustness of conclusions to different assumptions for the underlying survival function.

SELECTION OF CITATIONS
SEARCH DETAIL