Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Neuroimage ; 263: 119612, 2022 11.
Article in English | MEDLINE | ID: mdl-36070839

ABSTRACT

Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity.


Subject(s)
Connectome , Electronic Data Processing , Neuroimaging , Software , Humans , Brain/diagnostic imaging , Brain/anatomy & histology , Connectome/methods , Diffusion Tensor Imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Software/standards , Electronic Data Processing/methods , Electronic Data Processing/standards
2.
Neuroimage ; 224: 117429, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33038538

ABSTRACT

Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.


Subject(s)
Brain/diagnostic imaging , Connectome , Diffusion Magnetic Resonance Imaging , Functional Neuroimaging , Magnetic Resonance Imaging , Adult , Brain/physiology , Cognition , Female , Humans , Male , Markov Chains , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Young Adult
3.
Heliyon ; 6(4): e03702, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32322711

ABSTRACT

Silicon-based devices, such as neural probes, are increasingly used as electrodes for receiving electrical signals from neural tissue. Neural probes used chronically have been known to induce inflammation and elicit an immune response. The current study detects and evaluates silicon dispersion from a concentrated source in the mouse brain using laser induced breakdown spectroscopy. Element lines for Si (I) were found at the injection site at approximately 288 nm at 3hr post-implantation, even with tissue perfusion, indicating possible infusion into neural tissue. At 24hr and 1-week post-implantation, no silicon lines were found, indicating clearance. An isolated immune response was found by CD68 macrophage response at 24hr post injection. Future studies should measure chronic silicon exposure to determine if the inflammatory response is proportional to silicon administration. The present type of protocol, coupling laser induced breakdown spectroscopy, neuroimaging, histology, immunohistochemistry, and determination of clearance could be used to investigate the glymphatic system and different tissue states such as in disease (e.g. Alzheimer's).

4.
Front Neurosci ; 13: 902, 2019.
Article in English | MEDLINE | ID: mdl-31619943

ABSTRACT

Humans perceive musical sound as a complex phenomenon, which is known to induce an emotional response. The cues used to perceive emotion in music have not been unequivocally elucidated. Here, we sought to identify the attributes of sound that confer an emotion to music and determine if professional musicians have different musical emotion perception than non-musicians. The objective was to determine which sound cues are used to resolve emotional signals. Happy or sad classical music excerpts modified in fine structure or envelope conveying different degrees of emotional certainty were presented. Certainty was determined by identification of the emotional characteristic presented during a forced-choice discrimination task. Participants were categorized as good or poor performers (n = 32, age 21.16 ± 2.59 SD) and in a separate group as musicians in the first or last year of music education at a conservatory (n = 32, age 21.97 ± 2.42). We found that temporal fine structure information is essential for correct emotional identification. Non-musicians used less fine structure information to discriminate emotion in music compared with musicians. The present psychophysical experiments revealed what cues are used to resolve emotional signals and how they differ between non-musicians and musically educated individuals.

SELECTION OF CITATIONS
SEARCH DETAIL