Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Acta Crystallogr A ; 46 ( Pt 1): 57-68, 1990 Jan 01.
Article in English | MEDLINE | ID: mdl-2310535

ABSTRACT

Monoclinic crystals of Bacillus stearothermophilus tryptophanyl-tRNA synthetase grown in the presence of substrate tryptophan (space group P2(1)) display evidence of a low-resolution trigonal space group (P321). The origin and averaging transformations for the local 32 point group of this unusually clear sixfold non-crystallographic symmetry may be inferred without prior estimation of the electron density. This local symmetry was exploited in conjunction with solvent density contrast variation to determine the shape of the molecular envelope. X-ray intensities measured from crystals equilibrated in mother liquors of three different electron densities were used to estimate three parameters for each reflection: the modulus of the envelope transform, [Gh]; and components, Xh and Yh, relative to Gh, of the structure-factor vector for the transform of intramolecular density fluctuations. The moduli ([Gh]) behave somewhat like structure-factor amplitudes from small-molecule crystals, and estimation of their unknown phases was successfully carried out by statistical direct methods. Reflections to 18 A resolution, which obey rather well the symmetry of space group P321, were merged to produce an asymmetric unit in that space group. [Gh] values for the 34 strongest of these were phased using the small-molecule direct-methods package MITHRIL [Gilmore (1984). J. Appl Cryst. 17, 42-46]. The best phase set was expanded back to the P2(1) lattice and negative density was truncated to generate initial phases for all reflections to 18 A resolution. Phase refinement by iterative imposition of the local 32 symmetry produced an envelope with convincing features consistent with known properties of the enzyme. The envelope implies that the tryptophanyl-tRNA synthetase dimer is an elongated structure with an axial ratio of about 4:1, in which the monomers have two distinct domains of unequal size. The smaller of these occurs at the dimer interface, and resembles the nucleotide binding portion of the tyrosyl-tRNA synthetase. It may therefore contain the amino-terminal one hundred or so residues, including all three cysteines, previously suggested to comprise a nucleotide-binding domain in the tryptophanyl enzyme. A purely crystallographic test of the overall features of this envelope was carried out by transporting it to a tetragonal crystal form of the same protein in which the asymmetric unit is a monomer. The small domain fits snugly inside three mercury and one gold heavy-atom binding sites for this crystal form; and symmetry-related molecules provide excellent, but very different, lattice contacts in nearly all directions.


Subject(s)
Amino Acyl-tRNA Synthetases , Geobacillus stearothermophilus/enzymology , Tryptophan-tRNA Ligase , Protein Conformation , X-Ray Diffraction
2.
Biochemistry ; 24(13): 3149-57, 1985 Jun 18.
Article in English | MEDLINE | ID: mdl-2992578

ABSTRACT

A new series of thio ester, depsipeptide, and peptide substrates have been synthesized for the bacterial enzyme Clostridium histolyticum collagenase. The hydrolysis of the depsipeptide substrate was followed on a pH stat, and thio ester hydrolysis was measured by inclusion of the chromogenic thiol reagent 4,4'-dithiopyridine in the assay mixture. The best thio ester substrate, Boc-Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba, had a kcat/KM of 63 000 M-1 s-1, while several shorter thio ester sequences were inactive as substrates. In general, the peptide analogues of all the reactive thio ester substrates were shown to be hydrolyzed 5-10 times faster by collagenase. In one case (Z-Gly-Pro-Leu-Gly-Pro-NH2) where a comparison was made, the peptide substrate was respectively 8- and 106-fold more readily hydrolyzed than the corresponding thio ester and ester substrates. Cleavages of the two fluorescence-quench substrates Abz-Gly-Pro-Leu-Gly-Pro-Nba and Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba could be easily followed fluorogenically since a 5-10-fold increase in fluorescence occurred upon hydrolysis. The fluorescent peptide substrate is the best synthetic substrate known for C. histolyticum collagenase with a kcat/KM value of 490 000 M-1 s-1. A series of new reversible inhibitors were developed by the attachment of zinc ligating groups (hydroxamic acid, carboxymethyl, and thiol) to various peptide sequences specific for C. histolyticum collagenase. The shorter peptides designed to bind to either the P3-P1 or P1'-P3' subsites were poor to moderate inhibitors. The thiol HSCH2CH2CO-Pro-Nba had the lowest K1 (0.02 mM).(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Clostridium/enzymology , Microbial Collagenase/metabolism , Esters , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Microbial Collagenase/antagonists & inhibitors , Spectrometry, Fluorescence , Substrate Specificity , Sulfhydryl Compounds
3.
Biochemistry ; 24(8): 2048-58, 1985 Apr 09.
Article in English | MEDLINE | ID: mdl-3893542

ABSTRACT

The extended substrate binding sites of several chymotrypsin-like serine proteases, including rat mast cell proteases I and II (RMCP I and II, respectively) and human and dog skin chymases, have been investigated by using peptide 4-nitroanilide substrates. In general, these enzymes preferred a P1 Phe residue and hydrophobic amino acid residues in P2 and P3. A P2 Pro residue was also found to be quite acceptable. The S4 subsites of these enzymes are less restrictive than the other subsites investigated. The substrate specificity of these enzymes was also investigated by using substrates which contain model desmosine residues and peptides with amino acid sequences of the physiologically important substrates angiotensin I and angiotensinogen and alpha 1-antichymotrypsin, the major plasma inhibitor for chymotrypsin-like enzymes. These substrates were less reactive than the most reactive tripeptide reported here, Suc-Val-Pro-Phe-NA. The thiobenzyl ester Suc-Val-Pro-Phe-SBzl was found to be an extremely reactive substrate for the enzymes tested and was 6-171-fold more reactive than the 4-nitroanilide substrate. The four chymotrypsin-like enzymes were inhibited by chymostatin and N-substituted saccharin derivatives which had KI values in the micromolar range. In addition, several potent peptide chloromethyl ketone and substituted benzenesulfonyl fluoride irreversible inhibitors for these enzymes were discovered. The most potent sulfonyl fluoride inhibitor for RMCP I, RMCP II, and human skin chymase, 2-(Z-NHCH2CONH)C6H4SO2F, had kobsd/[I] values of 2500, 270, and 1800 M-1 s-1, respectively. The substrates and inhibitors reported here should be extremely useful in elucidating the physiological roles of these proteases.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Anilides/metabolism , Cathepsins/blood , Chymotrypsin/metabolism , Endopeptidases/metabolism , Mast Cells/enzymology , Peptide Hydrolases/metabolism , Phenylmethylsulfonyl Fluoride , Serine Endopeptidases , Skin/enzymology , Sulfones , Animals , Cathepsin G , Chymases , Dogs , Humans , Kinetics , Leukocytes/enzymology , Phenylmethylsulfonyl Fluoride/analogs & derivatives , Rats , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL