Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Pharmacol Exp Ther ; 375(3): 510-521, 2020 12.
Article in English | MEDLINE | ID: mdl-33033171

ABSTRACT

Inhibition of the serine protease enteropeptidase (EP) opens a new avenue to the discovery of chemotherapeutics for the treatment of metabolic diseases. Camostat has been used clinically for treating chronic pancreatitis in Japan; however, the mechanistic basis of the observed clinical efficacy has not been fully elucidated. We demonstrate that camostat is a potent reversible covalent inhibitor of EP, with an inhibition potency (k inact/KI) of 1.5 × 104 M-1s-1 High-resolution liquid chromatography-mass spectrometry (LC-MS) showed addition of 161.6 Da to EP after the reaction with camostat, consistent with insertion of the carboxyphenylguanidine moiety of camostat. Covalent inhibition of EP by camostat is reversible, with an enzyme reactivation half-life of 14.3 hours. Formation of a covalent adduct was further supported by a crystal structure resolved to 2.19 Å, showing modification of the catalytic serine of EP by a close analog of camostat, leading to formation of the carboxyphenylguanidine acyl enzyme identical to that expected for the reaction with camostat. Of particular note, minor structural modifications of camostat led to changes in the mechanism of inhibition. We observed from other studies that sustained inhibition of EP is required to effect a reduction in cumulative food intake and body weight, with concomitant improved blood glucose levels in obese and diabetic leptin-deficient mice. Thus, the structure-activity relationship needs to be driven by not only the inhibition potency but also the mechanistic and kinetic characterization. Our findings support EP as a target for the treatment of metabolic diseases and demonstrate that reversible covalent EP inhibitors show clinically relevant efficacy. SIGNIFICANCE STATEMENT: Interest in targeted covalent drugs has expanded in recent years, particularly so for kinase targets, but also more broadly. This study demonstrates that reversible covalent inhibition of the serine protease enteropeptidase is a therapeutically viable approach to the treatment of metabolic diseases and that mechanistic details of inhibition are relevant to clinical efficacy. Our mechanistic and kinetic studies outline a framework for detailed inhibitor characterization that is proving essential in guiding discovery efforts in this area.


Subject(s)
Enteropeptidase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Metabolism/drug effects , Animals , Blood Glucose/metabolism , Body Weight/drug effects , CHO Cells , Cricetulus , Diabetes Mellitus/metabolism , Eating/drug effects , Enteropeptidase/chemistry , Enzyme Inhibitors/chemistry , Half-Life , Humans , Kinetics , Models, Molecular , Obesity/metabolism , Protein Conformation , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 30(12): 127205, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32336498

ABSTRACT

The nuclear receptor retinoic acid receptor-related orphan receptor gamma t (RORγt) is a transcription factor that drives Th17 cell differentiation and IL-17 production in both innate and adaptive immune cells. The IL-23/IL-17 pathway is implicated in major autoimmune and inflammatory diseases. RORγt lies at the core of this pathway and represents an attractive opportunity for intervention with small molecule therapeutics. Despite diverse chemical series having been reported, combining high potency and nuclear receptor selectivity with good physicochemical properties remains a challenging endeavor in the field of RORγt drug discovery. We recently described the discovery and evaluation of a new class of potent and selective RORγt inverse agonists based on a thiazole scaffold. Herein we describe the successful optimization of this class by incorporation of an additional amide moiety at the 4-position of the thiazole core. In several optimization cycles, we have reduced human PXR activation, improved solubility, and increased potency while maintaining nuclear receptor selectivity. X-ray crystallographic analysis of compound 1g bound in the sterol binding site of the ligand binding domain of RORγt was largely consistent with an earlier structure, guiding further insight into the molecular mechanism for RORγt inhibition with this series. Compound 1g is orally bioavailable, potent in a human whole blood assay and proved to be efficacious in an ex-vivo IL-17A assay, and was selected for preclinical evaluation.


Subject(s)
Amides/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Small Molecule Libraries/chemistry , Thiazoles/chemistry , Autoimmune Diseases/drug therapy , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Inflammation/drug therapy , Interleukin-17/chemistry , Models, Molecular , Molecular Structure , Protein Binding , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Thiazoles/pharmacology
3.
Bioorg Med Chem Lett ; 30(12): 127174, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32334912

ABSTRACT

Starting from previously identified thiazole-2-carboxamides exemplified by compound 1/6, two new series of RORγt inverse agonists with significantly improved aqueous solubility, ADME parameters and oral PK properties were discovered. These scaffolds were identified from a bioisosteric amide replacement approach. Amongst the variety of heterocycles explored, a 1,3,4-oxadiazole led to compounds with the best overall profile for SAR development and in vivo exploration. In an ex vivo mouse PD model, concentration dependent efficacy was demonstrated and compounds 3/5 and 6/3 were profiled in a 5-day rat tolerability study.


Subject(s)
Amides/pharmacology , Drug Discovery , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Oxadiazoles/pharmacology , Thiazoles/pharmacology , Administration, Oral , Amides/administration & dosage , Amides/chemistry , Animals , Dose-Response Relationship, Drug , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Oxadiazoles/administration & dosage , Oxadiazoles/chemistry , Rats , Structure-Activity Relationship , Thiazoles/administration & dosage , Thiazoles/chemistry
4.
Bioorg Med Chem Lett ; 29(23): 126743, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31678006

ABSTRACT

We describe a series of potent and highly selective small-molecule MALT1 inhibitors, optimized from a High-Throughput Screening hit. Advanced analogues such as compound 40 show high potency (IC50: 0.01 µM) in a biochemical assay measuring MALT1 enzymatic activity, as well as in cellular assays: Jurkat T cell activation (0.05 µM) and IL6/10 secretion (IC50: 0.10/0.06 µM) in the TMD8 B-cell lymphoma line. Compound 40 also inhibited cleavage of the MALT1 substrate RelB (IC50: 0.10 µM). Mechanistic enzymology results suggest that these compounds bind to the known allosteric site of the protease.


Subject(s)
Drug Discovery/methods , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Cell Line, Tumor , Humans
5.
Bioorg Med Chem Lett ; 29(12): 1463-1470, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31010722

ABSTRACT

We have previously reported the syntheses of a series of 3,6-disubstituted quinolines as modulators of the retinoic acid receptor-related orphan receptor gamma t (RORγt). These molecules are potent binders but are high molecular weight and they exhibited poor solubility at pH 2 and pH 7. This manuscript details our efforts at improving physical chemical properties for this series of compounds by increasing the diversity at the 3-position (i.e. introducing heteroatoms and lowering the molecular weight). These efforts have led to molecules which are potent binders with improved solubility.


Subject(s)
Drug Inverse Agonism , Quinolines/agonists , Animals , Humans , Molecular Structure , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 28(9): 1446-1455, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29631962

ABSTRACT

The nuclear receptor retinoic acid receptor-related orphan receptor gamma t (RORγt) is a transcription factor that drives Th17 cell differentiation and IL-17 production in both innate and adaptive immune cells. The IL-23/IL-17 pathway is implicated in major autoimmune and inflammatory diseases. RORγt lies at the core of this pathway and represents an attractive opportunity for intervention with a small molecule. Despite diverse chemical series having been reported, combining high potency and nuclear receptor selectivity with good physicochemical properties remains a challenging endeavor in the field of RORγt drug discovery. We describe the discovery and evaluation of a new class of potent and selective RORγt inverse agonists based on a thiazole core. Acid analog 1j demonstrated oral bioavailability in rats and was potent in a human whole blood assay, suggesting potential utility in treating autoimmune and inflammatory diseases such as psoriasis. X-ray crystallographic data helped to elucidate the molecular mechanism for RORγt inhibition with this series.


Subject(s)
Receptors, Retinoic Acid/agonists , Thiazoles/pharmacology , Animals , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Rats , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
7.
Bioorg Med Chem Lett ; 28(12): 2159-2164, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29779975

ABSTRACT

We designed and synthesized a new series of fatty acid synthase (FASN) inhibitors with potential utility for the treatment of cancer. Extensive SAR studies led to highly active FASN inhibitors with good cellular activity and oral bioavailability, exemplified by compound 34. Compound 34 is a potent inhibitor of human FASN (IC50 = 28 nM) that effectively inhibits proliferation of A2780 ovarian cells (IC50 = 13 nM) in lipid-reduced serum (LRS). This cellular activity can be rescued by addition of palmitate, consistent with an on-target effect. Compound 34 is also active in many other cell types, including PC3M (IC50 = 25 nM) and LnCaP-Vancouver prostate cells (IC50 = 66 nM), and is highly bioavailable (F 61%) with good exposure after oral administration. In a pharmacodynamics study in H460 lung xenograft-bearing mice, oral treatment with compound 34 results in elevated tumor levels of malonyl-CoA and decreased tumor levels of palmitate, fully consistent with the desired target engagement.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Imidazoles/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Fatty Acid Synthase, Type I/metabolism , Humans , Imidazoles/administration & dosage , Imidazoles/chemical synthesis , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 27(9): 2047-2057, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28318945

ABSTRACT

A high-throughput screen of the ligand binding domain of the nuclear receptor retinoic acid-related orphan receptor gamma t (RORγt) employing a thermal shift assay yielded a quinoline tertiary alcohol hit. Optimization of the 2-, 3- and 4-positions of the quinoline core using structure-activity relationships and structure-based drug design methods led to the discovery of a series of modulators with improved RORγt inhibitory potency and inverse agonism properties.


Subject(s)
Drug Design , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Quinolines/chemistry , Quinolines/pharmacology , Humans , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship , Th17 Cells/drug effects
9.
Bioorg Med Chem Lett ; 27(23): 5277-5283, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29079472

ABSTRACT

We identified 6-substituted quinolines as modulators of the retinoic acid receptor-related orphan receptor gamma t (RORγt). The synthesis of this class of RORγt modulators is reported, and optimization of the substituents at the quinoline 6-position that produced compounds with high affinity for the receptor is detailed. This effort identified molecules that act as potent, full inverse agonists in a RORγt-driven cell-based reporter assay. The X-ray crystal structures of two full inverse agonists from this chemical series bound to the RORγt ligand binding domain are disclosed, and we highlight the interaction of a hydrogen-bond acceptor on the 6-position substituent of the inverse agonist with Glu379:NH as a conserved binding contact.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Quinolines/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Ligands , Models, Molecular , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
10.
Proc Natl Acad Sci U S A ; 111(33): 12163-8, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25092323

ABSTRACT

The RAR-related orphan receptor gamma t (RORγt) is a nuclear receptor required for generating IL-17-producing CD4(+) Th17 T cells, which are essential in host defense and may play key pathogenic roles in autoimmune diseases. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol and lipid metabolism. Here, we describe the identification of several naturally occurring oxysterols as RORγt agonists. The most potent and selective activator for RORγt is 7ß, 27-dihydroxycholesterol (7ß, 27-OHC). We show that these oxysterols reverse the inhibitory effect of an RORγt antagonist, ursolic acid, in RORγ- or RORγt-dependent cell-based reporter assays. These ligands bind directly to recombinant RORγ ligand binding domain (LBD), promote recruitment of a coactivator peptide, and reduce binding of a corepressor peptide to RORγ LBD. In primary cells, 7ß, 27-OHC and 7α, 27-OHC enhance the differentiation of murine and human IL-17-producing Th17 cells in an RORγt-dependent manner. Importantly, we showed that Th17, but not Th1 cells, preferentially produce these two oxysterols. In vivo, administration of 7ß, 27-OHC in mice enhanced IL-17 production. Mice deficient in CYP27A1, a key enzyme in generating these oxysterols, showed significant reduction of IL-17-producing cells, including CD4(+) and γδ(+) T cells, similar to the deficiency observed in RORγt knockout mice. Our results reveal a previously unknown mechanism for selected oxysterols as immune modulators and a direct role for CYP27A1 in generating these RORγt agonist ligands, which we propose as RORγt endogenous ligands, driving both innate and adaptive IL-17-dependent immune responses.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Sterols/pharmacology , Th17 Cells/cytology , Animals , Cell Differentiation , Cholestanetriol 26-Monooxygenase/metabolism , Interleukin-17/biosynthesis , Ligands , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Sterols/metabolism
11.
J Hepatol ; 58(3): 445-51, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23142061

ABSTRACT

BACKGROUND & AIMS: TMC435 is a potent, once-daily, investigational hepatitis C virus (HCV) NS3/4A protease inhibitor in phase III clinical development. In the phase II trial TMC435-C202 (NCT00812331), TMC435 displayed potent activity in genotype 4, 5 and 6 patients and in 3/6 genotype 2 patients, whereas no activity was observed with genotype 3. METHODS: Thirty-seven patients received TMC435 monotherapy (200 mg once daily) for 7 days. HCV RNA, NS3 protease sequences and the corresponding phenotypes were evaluated. RESULTS: Genotype and isolate-specific baseline polymorphisms at NS3 positions known to affect HCV protease inhibitor activity were present in all genotypes. Consistent with the antiviral activity observed in genotypes 4 and 6, TMC435 was active in vitro against all genotype 4 isolates, and against most genotype 6 polymorphisms when tested as single or double mutants. In contrast, in genotype 3 where no HCV RNA decline was observed, isolates displayed >700-fold increases in EC(50) attributed to the D168Q polymorphism. In genotypes 2 and 5, HCV RNA changes from baseline to Day 3 ranged between -0.3 to -3.6 and -1.5 to -4.0 log(10)IU/ml, respectively, and isolates or site-directed mutants displayed intermediate in vitro susceptibility to TMC435 with fold changes in EC(50) between 15 and 78. Viral breakthrough in genotypes 4-6 was associated with emerging mutations including Q80R, R155K and/or D168E/V. CONCLUSIONS: Sequence and phenotypic analyses of baseline isolates identified polymorphisms which could explain the differences in antiviral activity between genotypes. Pathways of TMC435 resistance in genotypes 2-6 were similar to those identified in genotype 1.


Subject(s)
Antiviral Agents/therapeutic use , Hepacivirus/drug effects , Hepatitis C/drug therapy , Heterocyclic Compounds, 3-Ring/therapeutic use , Sulfonamides/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Genotype , Hepacivirus/classification , Hepacivirus/genetics , Hepatitis C/virology , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Mutation , Polymorphism, Genetic , RNA, Viral/blood , Simeprevir , Sulfonamides/pharmacology , Viral Nonstructural Proteins/genetics
12.
Proc Natl Acad Sci U S A ; 107(46): 20057-62, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21030679

ABSTRACT

The development of HIV integrase (IN) strand transfer inhibitors (INSTIs) and our understanding of viral resistance to these molecules have been hampered by a paucity of available structural data. We recently reported cocrystal structures of the prototype foamy virus (PFV) intasome with raltegravir and elvitegravir, establishing the general INSTI binding mode. We now present an expanded set of cocrystal structures containing PFV intasomes complexed with first- and second-generation INSTIs at resolutions of up to 2.5 Å. Importantly, the improved resolution allowed us to refine the complete coordination spheres of the catalytic metal cations within the INSTI-bound intasome active site. We show that like the Q148H/G140S and N155H HIV-1 IN variants, the analogous S217H and N224H PFV INs display reduced sensitivity to raltegravir in vitro. Crystal structures of the mutant PFV intasomes in INSTI-free and -bound forms revealed that the amino acid substitutions necessitate considerable conformational rearrangements within the IN active site to accommodate an INSTI, thus explaining their adverse effects on raltegravir antiviral activity. Furthermore, our structures predict physical proximity and an interaction between HIV-1 IN mutant residues His148 and Ser/Ala140, rationalizing the coevolution of Q148H and G140S/A mutations in drug-resistant viral strains.


Subject(s)
Drug Resistance, Viral/genetics , Evolution, Molecular , HIV Integrase Inhibitors/pharmacology , Integrases/metabolism , Retroviridae/enzymology , Amino Acid Substitution/genetics , Catalytic Domain , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/metabolism , HIV-1/enzymology , HIV-1/genetics , Inhibitory Concentration 50 , Mutation/genetics , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Raltegravir Potassium
13.
Proc Natl Acad Sci U S A ; 107(1): 308-13, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19966279

ABSTRACT

Six-helix bundle (6HB) formation is an essential step for many viruses that rely on a class I fusion protein to enter a target cell and initiate replication. Because the binding modes of small molecule inhibitors of 6HB formation are largely unknown, precisely how they disrupt 6HB formation remains unclear, and structure-based design of improved inhibitors is thus seriously hampered. Here we present the high resolution crystal structure of TMC353121, a potent inhibitor of respiratory syncytial virus (RSV), bound at a hydrophobic pocket of the 6HB formed by amino acid residues from both HR1 and HR2 heptad-repeats. Binding of TMC353121 stabilizes the interaction of HR1 and HR2 in an alternate conformation of the 6HB, in which direct binding interactions are formed between TMC353121 and both HR1 and HR2. Rather than completely preventing 6HB formation, our data indicate that TMC353121 inhibits fusion by causing a local disturbance of the natural 6HB conformation.


Subject(s)
Antiviral Agents/metabolism , Benzimidazoles/metabolism , Pyridines/metabolism , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cell Fusion , Crystallography, X-Ray , HeLa Cells , Humans , Membrane Fusion/physiology , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Structure, Secondary , Pyridines/chemistry , Pyridines/pharmacology , Repetitive Sequences, Amino Acid , Respiratory Syncytial Virus, Human/chemistry , Sequence Alignment , Structure-Activity Relationship , Viral Fusion Proteins/antagonists & inhibitors , Viral Fusion Proteins/genetics
14.
Antimicrob Agents Chemother ; 56(9): 4676-84, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22710121

ABSTRACT

Hepatitis C virus (HCV) infection is a major global health burden and is associated with an increased risk of liver cirrhosis and hepatocellular carcinoma. There remains an unmet medical need for efficacious and safe direct antivirals with complementary modes of action for combination in treatment regimens to deliver a high cure rate with a short duration of treatment for HCV patients. Here we report the in vitro inhibitory activity, mode of action, binding kinetics, and resistance profile of TMC647055, a novel and potent nonnucleoside inhibitor of the HCV NS5B RNA-dependent RNA polymerase. In vitro combination studies with an HCV NS3/4A protease inhibitor demonstrated potent suppression of HCV RNA replication, confirming the potential for combination of these two classes in the treatment of chronic HCV infection. TMC647055 is a potent nonnucleoside NS5B polymerase inhibitor of HCV replication with a promising in vitro biochemical, kinetic, and virological profile that is currently undergoing clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Cell Line , Cloning, Molecular , Drug Combinations , Drug Synergism , Escherichia coli/genetics , Genes, Reporter , Hepacivirus/enzymology , Hepacivirus/genetics , Hepacivirus/growth & development , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Humans , Plasmids , RNA-Dependent RNA Polymerase/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Transfection , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
15.
Bioorg Med Chem Lett ; 22(13): 4437-43, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22633687

ABSTRACT

Optimization of a novel series of macrocyclic indole-based inhibitors of the HCV NS5b polymerase targeting the finger loop domain led to the discovery of lead compounds exhibiting improved potency in cellular assays and superior pharmacokinetic profile. Further lead optimization performed on the most promising unsaturated-bridged subseries provided the clinical candidate 27-cyclohexyl-12,13,16,17-tetrahydro-22-methoxy-11,17-dimethyl-10,10-dioxide-2,19-methano-3,7:4,1-dimetheno-1H,11H-14,10,2,9,11,17-benzoxathiatetraazacyclo docosine-8,18(9H,15H)-dione, TMC647055 (compound 18a). This non-zwitterionic 17-membered ring macrocycle combines nanomolar cellular potency (EC(50) of 82 nM) with minimal associated cell toxicity (CC(50)>20 µM) and promising pharmacokinetic profiles in rats and dogs. TMC647055 is currently being evaluated in the clinic.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Indoles/chemistry , Sulfonamides/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Humans , Liver/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
16.
Bioorg Med Chem Lett ; 22(13): 4431-6, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22542193

ABSTRACT

Novel conformationaly constrained 1,6- and 2,6-macrocyclic HCV NS5b polymerase inhibitors, in which either the nitrogen or the phenyl ring in the C2 position of the central indole core is tethered to an acylsulfamide acid bioisostere, have been designed and tested for their anti-HCV potency. This transformational route toward non-zwitterionic finger loop-directed inhibitors led to the discovery of derivatives with improved cell potency and pharmacokinetic profile.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Indoles/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
17.
J Virol ; 84(6): 2923-34, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20071590

ABSTRACT

The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is an unusually attractive target for drug discovery since it contains five distinct drugable sites. The success of novel antiviral therapies will require nonnucleoside inhibitors to be active in at least patients infected with HCV of subtypes 1a and 1b. Therefore, the genotypic assessment of these agents against clinical isolates derived from genotype 1-infected patients is an important prerequisite for the selection of suitable candidates for clinical development. Here we report the 1a/1b subtype profiling of polymerase inhibitors that bind at each of the four known nonnucleoside binding sites. We show that inhibition of all of the clinical isolates tested is maintained, except for inhibitors that bind at the palm-1 binding site. Subtype coverage varies across chemotypes within this class of inhibitors, and inhibition of genotype 1a improves when hydrophobic contact with the polymerase is increased. We investigated if the polymorphism of the palm-1 binding site is the sole cause of the reduced susceptibility of subtype 1a to inhibition by 1,5-benzodiazepines by using reverse genetics, X-ray crystallography, and surface plasmon resonance studies. We showed Y415F to be a key determinant in conferring resistance on subtype 1a, with this effect being mediated through an inhibitor- and enzyme-bound water molecule. Binding studies revealed that the mechanism of subtype 1a resistance is faster dissociation of the inhibitor from the enzyme.


Subject(s)
Antiviral Agents/therapeutic use , Hepacivirus/enzymology , Hepatitis C/drug therapy , Isoenzymes/antagonists & inhibitors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Benzodiazepines/chemistry , Benzodiazepines/metabolism , Binding Sites , Crystallography, X-Ray , Drug Discovery , Hepacivirus/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Replicon/physiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
18.
Antimicrob Agents Chemother ; 54(5): 1878-87, 2010 May.
Article in English | MEDLINE | ID: mdl-20176898

ABSTRACT

TMC435 is a small-molecule inhibitor of the NS3/4A serine protease of hepatitis C virus (HCV) currently in phase 2 development. The in vitro resistance profile of TMC435 was characterized by selection experiments with HCV genotype 1 replicon cells and the genotype 2a JFH-1 system. In 80% (86/109) of the sequences from genotype 1 replicon cells analyzed, a mutation at NS3 residue D168 was observed, with changes to V or A being the most frequent. Mutations at NS3 positions 43, 80, 155, and 156, alone or in combination, were also identified. A transient replicon assay confirmed the relevance of these positions for TMC435 inhibitory activity. The change in the 50% effective concentrations (EC(50)s) observed for replicons with mutations at position 168 ranged from <10-fold for those with the D168G or D168N mutation to approximately 2,000-fold for those with the D168V or D168I mutation, compared to the EC(50) for the wild type. Of the positions identified, mutations at residue Q80 had the least impact on the activity of TMC435 (<10-fold change in EC(50)s), while greater effects were observed for some replicons with mutations at positions 43, 155, and 156. TMC435 remained active against replicons with the specific mutations observed after in vitro or in vivo exposure to telaprevir or boceprevir, including most replicons with changes at positions 36, 54, and 170 (<3-fold change in EC(50)s). Replicons carrying mutations affecting the activity of TMC435 remained fully susceptible to alpha interferon and NS5A and NS5B inhibitors. Finally, combinations of TMC435 with alpha interferon and NS5B polymerase inhibitors prevented the formation of drug-resistant replicon colonies.


Subject(s)
Hepacivirus/drug effects , Hepatitis C/drug therapy , Heterocyclic Compounds, 3-Ring/pharmacology , Protease Inhibitors/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Cell Line , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Drug Synergism , Genotype , Hepacivirus/enzymology , Hepacivirus/genetics , Hepatitis C/virology , Humans , In Vitro Techniques , Interferon-alpha/pharmacology , Mutagenesis , Simeprevir , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
19.
Bioorg Med Chem Lett ; 19(9): 2492-6, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19342234

ABSTRACT

Optimization through parallel synthesis of a novel series of hepatitis C virus (HCV) NS5B polymerase inhibitors led to the identification of (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(6-methylpyridine-2-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zc and (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(2,5-dimethyloxazol-4-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zk as potent (replicon EC(50)=400nM and 270nM, respectively) and selective (CC(50)>20muM) inhibitors of HCV replication. These data warrant further lead-optimization efforts.


Subject(s)
Antiviral Agents/chemical synthesis , Benzodiazepines/chemistry , Chemistry, Pharmaceutical/methods , Hepacivirus/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Acrylates/chemistry , Antiviral Agents/pharmacology , Crystallography, X-Ray , Drug Design , Hepacivirus/enzymology , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Structure , Structure-Activity Relationship
20.
J Med Chem ; 62(15): 6843-6853, 2019 08 08.
Article in English | MEDLINE | ID: mdl-30860377

ABSTRACT

Interest is growing in the use of macrocycles in pharmaceutical discovery. Macrocylization may provide a gateway to an expanded chemical space for small-molecule drug discovery, and this could be beneficial in prosecuting difficult targets, e.g., protein-protein interactions. Most, but not all, macrocycle drugs are derived from natural products. Studies on synthetic drug-like small-molecule macrocycles are limited, and our current understanding of macrocycle drugs is similarly limited. Following some background discussion, we review several examples of the structure-based design of synthetic macrocycles. Our opinion is that in conformationally suitable systems macrocycles are an analog class worthy of consideration. We then summarize an approach for the initial evaluation of molecules as candidates for macrocyclization.


Subject(s)
Drug Design , Drug Discovery/methods , Macrocyclic Compounds/chemistry , Drug Discovery/trends , Ligands , Molecular Structure , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL