Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EMBO J ; 41(14): e109217, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35670106

ABSTRACT

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Subject(s)
Herpesvirus 3, Human , Interferon Type I , Nucleotidyltransferases , Viral Proteins , DNA/metabolism , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/immunology , Humans , Immunity, Innate , Interferon Type I/immunology , Membrane Proteins/immunology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/immunology , Viral Proteins/immunology
2.
J Med Genet ; 53(4): 242-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26729821

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive genetic disorder characterised by dysfunction of motile cilia. Ciliary dysmotility causes poor mucociliary clearance and leads to impairment of pulmonary function and severe respiratory infections. PCD has no specific therapy. With the aim to permanently restore gene function and normalise ciliary motility, we used gene editing to replace mutated with wild-type sequence in defective cells. METHODS: The target gene was dynein heavy chain 11 (DNAH11), an essential component of ciliary structure. Airway ciliated cells were collected from two patients with PCD with DNAH11 nonsense mutations and altered ciliary beating and pattern. Repair of the genetic defect was performed ex vivo by site-specific recombination using transcription activator-like effector nucleases (TALENs). RESULTS: In an epithelial cell line engineered to contain the DNAH11 target site, TALENs cleaved over 80% of the mutated DNAH11 sequence and replaced the mutated sequence with wild-type sequence in about 50% of cells. In airway ciliated cells of patients with PCD, site-specific recombination and normalisation of ciliary beating and pattern occurred in 33% and 29% of cells, respectively. CONCLUSION: This study demonstrates that gene editing can rescue ciliary beating ex vivo, opening up new avenues for treating PCD.


Subject(s)
Axonemal Dyneins/genetics , Gene Editing , Genetic Therapy , Kartagener Syndrome/therapy , Adolescent , Cell Line , Cell Movement/genetics , Cilia/metabolism , Cilia/pathology , Epithelial Cells/pathology , Genotype , Humans , Kartagener Syndrome/genetics , Kartagener Syndrome/pathology , Lentivirus/genetics , Male , Phenotype , Twins
3.
Cytotherapy ; 18(2): 205-18, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26794713

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) modulate the immune response and represent a potential treatment for inflammatory and autoimmune diseases. We hypothesized that this feature could be potentiated by co-administering anti-inflammatory cytokines. In this article, we asked whether engineering of Wharton Jelly-derived human MSCs (WJ-hMSCs) to express an anti-inflammatory cytokine increases cell immunomodulatory properties without altering their native features. METHODS: We used Epstein-Barr virus-derived interleukin-10 (vIL-10), which shares some immunosuppressive properties with human IL-10 but lacks immunostimulatory activity. Engineering was accomplished by transducing WJ-hMSCs with a self-inactivating feline immunodeficiency virus-derived vector co-expressing vIL-10 and herpes simplex virus type-1 thymidine kinase (TK). TK was added to allow future tracking of WJ-hMSC in vivo by positron electron tomography (PET). RESULTS: The results show that (i) expression of TK and/or vIL-10 does not change WJ-hMSC phenotypic and functional properties; (ii) vIL-10 is secreted, biologically active and enhances the immunosuppressing functions of WJ-hMSCs; (iii) v-IL10 and TK can be produced simultaneously by the same cells and do not interfere with each other. DISCUSSION: WJ-hMSCs engineered to secrete vIL-10 could be a powerful tool for adoptive cell therapy of immune-mediated diseases, and therefore, additional studies are warranted to confirm their efficacy in suitable animal disease models.


Subject(s)
Interleukin-10/metabolism , Thymidine Kinase/metabolism , Wharton Jelly/cytology , Animals , Cell Line , HEK293 Cells , Herpesvirus 4, Human/genetics , Humans , Immunodeficiency Virus, Feline/genetics , Immunosuppression Therapy , Immunosuppressive Agents , Immunotherapy, Adoptive/methods , Interleukin-10/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Thymidine Kinase/genetics , Wharton Jelly/metabolism
4.
Cell Rep ; 31(6): 107640, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32402273

ABSTRACT

The anti-leukemia agent forodesine causes cytotoxic overload of intracellular deoxyguanosine triphosphate (dGTP) but is efficacious only in a subset of patients. We report that SAMHD1, a phosphohydrolase degrading deoxyribonucleoside triphosphate (dNTP), protects cells against the effects of dNTP imbalances. SAMHD1-deficient cells induce intrinsic apoptosis upon provision of deoxyribonucleosides, particularly deoxyguanosine (dG). Moreover, dG and forodesine act synergistically to kill cells lacking SAMHD1. Using mass cytometry, we find that these compounds kill SAMHD1-deficient malignant cells in patients with chronic lymphocytic leukemia (CLL). Normal cells and CLL cells from patients without SAMHD1 mutation are unaffected. We therefore propose to use forodesine as a precision medicine for leukemia, stratifying patients by SAMHD1 genotype or expression.


Subject(s)
Deoxyguanine Nucleotides/metabolism , Purine Nucleosides/pharmacology , Pyrimidinones/pharmacology , SAM Domain and HD Domain-Containing Protein 1/metabolism , Animals , Drug Resistance, Neoplasm , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Mice , Mice, Inbred C57BL
5.
Cell Rep ; 16(6): 1492-1501, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27477283

ABSTRACT

SAMHD1 is a restriction factor for HIV-1 infection. SAMHD1 mutations cause the autoinflammatory Aicardi-Goutières syndrome that is characterized by chronic type I interferon (IFN) secretion. We show that the spontaneous IFN response in SAMHD1-deficient cells and mice requires the cGAS/STING cytosolic DNA-sensing pathway. We provide genetic evidence that cell-autonomous control of lentivirus infection in myeloid cells by SAMHD1 limits virus-induced production of IFNs and the induction of co-stimulatory markers. This program of myeloid cell activation required reverse transcription, cGAS and STING, and signaling through the IFN receptor. Furthermore, SAMHD1 reduced the induction of virus-specific cytotoxic T cells in vivo. Therefore, virus restriction by SAMHD1 limits the magnitude of IFN and T cell responses. This demonstrates a competition between cell-autonomous virus control and subsequent innate and adaptive immune responses, a concept with important implications for the treatment of infection.


Subject(s)
Adaptive Immunity/immunology , HIV-1/immunology , Immunity, Innate/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Animals , Dendritic Cells/immunology , HIV Infections/metabolism , HIV-1/genetics , Interferon-beta/metabolism , Mice , Mice, Inbred C57BL , SAM Domain and HD Domain-Containing Protein 1/deficiency , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL