Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Blood ; 131(15): 1730-1742, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29453291

ABSTRACT

Epigenetic regulators are recurrently mutated and aberrantly expressed in acute myeloid leukemia (AML). Targeted therapies designed to inhibit these chromatin-modifying enzymes, such as the histone demethylase lysine-specific demethylase 1 (LSD1) and the histone methyltransferase DOT1L, have been developed as novel treatment modalities for these often refractory diseases. A common feature of many of these targeted agents is their ability to induce myeloid differentiation, suggesting that multiple paths toward a myeloid gene expression program can be engaged to relieve the differentiation blockade that is uniformly seen in AML. We performed a comparative assessment of chromatin dynamics during the treatment of mixed lineage leukemia (MLL)-AF9-driven murine leukemias and MLL-rearranged patient-derived xenografts using 2 distinct but effective differentiation-inducing targeted epigenetic therapies, the LSD1 inhibitor GSK-LSD1 and the DOT1L inhibitor EPZ4777. Intriguingly, GSK-LSD1 treatment caused global gains in chromatin accessibility, whereas treatment with EPZ4777 caused global losses in accessibility. We captured PU.1 and C/EBPα motif signatures at LSD1 inhibitor-induced dynamic sites and chromatin immunoprecipitation coupled with high-throughput sequencing revealed co-occupancy of these myeloid transcription factors at these sites. Functionally, we confirmed that diminished expression of PU.1 or genetic deletion of C/EBPα in MLL-AF9 cells generates resistance of these leukemias to LSD1 inhibition. These findings reveal that pharmacologic inhibition of LSD1 represents a unique path to overcome the differentiation block in AML for therapeutic benefit.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Leukemia, Biphenotypic, Acute/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/metabolism , Leukemia, Biphenotypic, Acute/pathology , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins/genetics , Response Elements , Trans-Activators/genetics
2.
Blood ; 129(3): 319-323, 2017 01 19.
Article in English | MEDLINE | ID: mdl-27827825

ABSTRACT

There is high interest in understanding the mechanisms that drive self-renewal of stem cells. HOXB4 is one of the few transcription factors that can amplify long-term repopulating hematopoietic stem cells in a controlled way. Here we show in mice that this characteristic of HOXB4 depends on a proline-rich sequence near the N terminus, which is unique among HOX genes and highly conserved in higher mammals. Deletion of this domain substantially enhanced the oncogenicity of HOXB4, inducing acute leukemia in mice. Conversely, insertion of the domain into Hoxa9 impaired leukemogenicity of this homeobox gene. These results indicate that proline-rich stretches attenuate the potential of stem cell active homeobox genes to acquire oncogenic properties.


Subject(s)
Cell Self Renewal , Hematopoietic Stem Cells/physiology , Homeodomain Proteins/physiology , Leukemia/etiology , Transcription Factors/physiology , Acute Disease , Animals , Carcinogens , Homeodomain Proteins/genetics , Mice , Proline , Sequence Analysis, Protein , Transcription Factors/genetics
3.
Cancer Cell ; 10(5): 363-74, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17097559

ABSTRACT

A challenge for the development of therapies selectively targeting leukemic stem cells in acute myeloid leukemia (AML) is their similarity to normal hematopoietic stem cells (HSCs). Here we demonstrate that the leukemia-propagating cell in murine CALM/AF10-positive AML differs from normal HSCs by B220 surface expression and immunoglobulin heavy chain rearrangement. Furthermore, depletion of B220+ cells in leukemic transplants impaired development of leukemia in recipients. As in the murine model, human CALM/AF10-positive AML was characterized by CD45RA (B220)-positive, IG DH-JH rearranged leukemic cells. These data demonstrate in a murine leukemia model that AML can be propagated by a transformed progenitor with lymphoid characteristics, which can be targeted by antibodies that do not crossreact with normal HSCs.


Subject(s)
Disease Models, Animal , Hematopoietic Stem Cells/physiology , Leukemia, Myeloid, Acute/physiopathology , Monomeric Clathrin Assembly Proteins/metabolism , Animals , Biomarkers/metabolism , Bone Marrow Transplantation , Cell Transformation, Neoplastic , Humans , Leukocyte Common Antigens/metabolism , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/metabolism , Mice , Monomeric Clathrin Assembly Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Survival Rate
4.
Hemasphere ; 7(10): e958, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37841755

ABSTRACT

Activating colony-stimulating factor-3 receptor gene (CSF3R) mutations are recurrent in acute myeloid leukemia (AML) with t(8;21) translocation. However, the nature of oncogenic collaboration between alterations of CSF3R and the t(8;21) associated RUNX1-RUNX1T1 fusion remains unclear. In CD34+ hematopoietic stem and progenitor cells from healthy donors, double oncogene expression led to a clonal advantage, increased self-renewal potential, and blast-like morphology and distinct immunophenotype. Gene expression profiling revealed hedgehog signaling as a potential mechanism, with upregulation of GLI2 constituting a putative pharmacological target. Both primary hematopoietic cells and the t(8;21) positive AML cell line SKNO-1 showed increased sensitivity to the GLI inhibitor GANT61 when expressing CSF3R T618I. Our findings suggest that during leukemogenesis, the RUNX1-RUNXT1 fusion and CSF3R mutation act in a synergistic manner to alter hedgehog signaling, which can be exploited therapeutically.

5.
Exp Hematol ; 108: 26-35, 2022 04.
Article in English | MEDLINE | ID: mdl-35181392

ABSTRACT

GATA2 zinc-finger (ZF) mutations are associated with distinct entities of myeloid malignancies. The specific distribution of these mutations points toward different mechanisms of leukemogenesis depending on the ZF domain affected. In this study, we compared recurring somatic mutations in ZF1 and ZF2. All tested ZF mutants disrupted DNA binding in vitro. In transcription assays, co-expression of FOG1 counteracted GATA2-dependent transcriptional activation, while a variable response to FOG1-mediated repression was observed for individual GATA2 mutants. In primary murine bone marrow cells, GATA2 wild-type (WT) expression inhibited colony formation, while this effect was reduced for both mutants A318T (ZF1) and L359V (ZF2) with a shift toward granulopoiesis. In primary human CD34+ bone marrow cells and in the myeloid cell line K562, ectopic expression of GATA2 L359V, but not A318T or G320D, caused a block of erythroid differentiation accompanied by downregulation of GATA1, STAT5B, and PLCG1. Our findings may explain the role of GATA2 L359V during the progression of chronic myeloid leukemia and the collaboration of GATA2 ZF1 alterations with CEBPA double mutations in erythroleukemia.


Subject(s)
GATA2 Transcription Factor , Leukemia, Erythroblastic, Acute , Leukemia, Myeloid , Animals , Cell Differentiation/genetics , GATA2 Transcription Factor/genetics , Humans , K562 Cells , Leukemia, Erythroblastic, Acute/genetics , Mice , Mutation , Zinc Fingers
6.
Oncogene ; 39(15): 3195-3205, 2020 04.
Article in English | MEDLINE | ID: mdl-32115572

ABSTRACT

ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic collaboration between mutated ZBTB7A and the RUNX1-RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here, we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-D-glucose. We observed that ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells, whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic inhibitors.


Subject(s)
Carcinogenesis/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/genetics , Hematopoiesis/genetics , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Transcription Factors/genetics , Animals , Bone Marrow/pathology , Carcinogenesis/drug effects , Cell Cycle Checkpoints/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Cell Lineage/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Gene Knockout Techniques , Glycolysis/drug effects , Glycolysis/genetics , Hematopoiesis/drug effects , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Loss of Function Mutation , Mice , Myeloid Progenitor Cells/pathology , Oncogene Proteins, Fusion/genetics , RUNX1 Translocation Partner 1 Protein/genetics , Tetradecanoylphorbol Acetate/pharmacology , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
7.
Cancer Discov ; 10(10): 1500-1513, 2020 10.
Article in English | MEDLINE | ID: mdl-32606137

ABSTRACT

The cell of origin of oncogenic transformation is a determinant of therapeutic sensitivity, but the mechanisms governing cell-of-origin-driven differences in therapeutic response have not been delineated. Leukemias initiating in hematopoietic stem cells (HSC) are less sensitive to chemotherapy and highly express the transcription factor MECOM (EVI1) compared with leukemias derived from myeloid progenitors. Here, we compared leukemias initiated in either HSCs or myeloid progenitors to reveal a novel function for EVI1 in modulating p53 protein abundance and activity. HSC-derived leukemias exhibit decreased apoptotic priming, attenuated p53 transcriptional output, and resistance to lysine-specific demethylase 1 (LSD1) inhibitors in addition to classical genotoxic stresses. p53 loss of function in Evi1 lo progenitor-derived leukemias induces resistance to LSD1 inhibition, and EVI1hi leukemias are sensitized to LSD1 inhibition by venetoclax. Our findings demonstrate a role for EVI1 in p53 wild-type cancers in reducing p53 function and provide a strategy to circumvent drug resistance in chemoresistant EVI1 hi acute myeloid leukemia. SIGNIFICANCE: We demonstrate that the cell of origin of leukemia initiation influences p53 activity and dictates therapeutic sensitivity to pharmacologic LSD1 inhibitors via the transcription factor EVI1. We show that drug resistance could be overcome in HSC-derived leukemias by combining LSD1 inhibition with venetoclax.See related commentary by Gu et al., p. 1445.This article is highlighted in the In This Issue feature, p. 1426.


Subject(s)
Gene Expression Regulation, Leukemic/genetics , Histone Demethylases/antagonists & inhibitors , Leukemia/physiopathology , Apoptosis , Humans , Transcription Factors
8.
J Clin Invest ; 115(8): 2159-68, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16025155

ABSTRACT

The molecular characterization of leukemia has demonstrated that genetic alterations in the leukemic clone frequently fall into 2 classes, those affecting transcription factors (e.g., AML1-ETO) and mutations affecting genes involved in signal transduction (e.g., activating mutations of FLT3 and KIT). This finding has favored a model of leukemogenesis in which the collaboration of these 2 classes of genetic alterations is necessary for the malignant transformation of hematopoietic progenitor cells. The model is supported by experimental data indicating that AML1-ETO and FLT3 length mutation (FLT3-LM), 2 of the most frequent genetic alterations in AML, are both insufficient on their own to cause leukemia in animal models. Here we report that AML1-ETO collaborates with FLT3-LM in inducing acute leukemia in a murine BM transplantation model. Moreover, in a series of 135 patients with AML1-ETO-positive AML, the most frequently identified class of additional mutations affected genes involved in signal transduction pathways including FLT3-LM or mutations of KIT and NRAS. These data support the concept of oncogenic cooperation between AML1-ETO and a class of activating mutations, recurrently found in patients with t(8;21), and provide a rationale for therapies targeting signal transduction pathways in AML1-ETO-positive leukemias.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcription Factors/genetics , Translocation, Genetic , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Core Binding Factor Alpha 2 Subunit , Disease Models, Animal , Female , Genes, ras/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukopoiesis/genetics , Male , Mice , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , RUNX1 Translocation Partner 1 Protein , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , fms-Like Tyrosine Kinase 3
9.
Chembiochem ; 9(6): 944-51, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18338351

ABSTRACT

An approach is presented to selectively label the methionines of the colicin E1 and B channel domains, each about 200 residues in size, and use them for oriented solid-state NMR investigations. By combining site-directed mutagenesis, bacterial overexpression in a methionine auxotroph E. coli strain and biochemical purification, quantitative amounts of the proteins for NMR structural investigations were obtained. The proteins were selectively labeled with (15)N at only one, or at a few, selected sites. Multidimensional heteronuclear correlation high-resolution NMR spectroscopy and mass spectrometry were used to monitor the quality of isotopic labeling. Thereafter the proteins were reconstituted into oriented phospholipid bilayers and investigated by proton-decoupled (15)N solid-state NMR spectroscopy. The colicin E1 thermolytic fragment that carries a single (15)N methionine within its hydrophobic helix 9 region exhibited (15)N resonances that are characteristic of helices that are oriented predominantly parallel to the membrane surface at low temperature, and a variety of alignments and conformations at room temperature. This suggests that the protein can adopt both umbrella and pen-knife conformations.


Subject(s)
Cell Membrane/chemistry , Colicins/chemistry , Staining and Labeling/methods , Amino Acid Sequence , Colicins/metabolism , Hot Temperature , Magnetic Resonance Spectroscopy , Mass Spectrometry , Methionine/chemistry , Molecular Sequence Data , Nitrogen Isotopes , Phospholipids/chemistry , Protein Structure, Tertiary , Protons , Sensitivity and Specificity
10.
Cancer Res ; 77(7): 1753-1762, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28202522

ABSTRACT

Chromatin-based mechanisms offer therapeutic targets in acute myeloid leukemia (AML) that are of great current interest. In this study, we conducted an RNAi-based screen to identify druggable chromatin regulator-based targets in leukemias marked by oncogenic rearrangements of the MLL gene. In this manner, we discovered the H4K16 histone acetyltransferase (HAT) MOF to be important for leukemia cell growth. Conditional deletion of Mof in a mouse model of MLL-AF9-driven leukemogenesis reduced tumor burden and prolonged host survival. RNA sequencing showed an expected downregulation of genes within DNA damage repair pathways that are controlled by MOF, as correlated with a significant increase in yH2AX nuclear foci in Mof-deficient MLL-AF9 tumor cells. In parallel, Mof loss also impaired global H4K16 acetylation in the tumor cell genome. Rescue experiments with catalytically inactive mutants of MOF showed that its enzymatic activity was required to maintain cancer pathogenicity. In support of the role of MOF in sustaining H4K16 acetylation, a small-molecule inhibitor of the HAT component MYST blocked the growth of both murine and human MLL-AF9 leukemia cell lines. Furthermore, Mof inactivation suppressed leukemia development in an NUP98-HOXA9-driven AML model. Taken together, our results establish that the HAT activity of MOF is required to sustain MLL-AF9 leukemia and may be important for multiple AML subtypes. Blocking this activity is sufficient to stimulate DNA damage, offering a rationale to pursue MOF inhibitors as a targeted approach to treat MLL-rearranged leukemias. Cancer Res; 77(7); 1753-62. ©2017 AACR.


Subject(s)
Histone Acetyltransferases/physiology , Leukemia/etiology , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Animals , Cell Line, Tumor , DNA Damage , Female , Histone Acetyltransferases/antagonists & inhibitors , Histones/metabolism , Homeodomain Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Nuclear Pore Complex Proteins/genetics
11.
Cancer Discov ; 6(10): 1166-1181, 2016 10.
Article in English | MEDLINE | ID: mdl-27535106

ABSTRACT

Homeobox (HOX) proteins and the receptor tyrosine kinase FLT3 are frequently highly expressed and mutated in acute myeloid leukemia (AML). Aberrant HOX expression is found in nearly all AMLs that harbor a mutation in the Nucleophosmin (NPM1) gene, and FLT3 is concomitantly mutated in approximately 60% of these cases. Little is known about how mutant NPM1 (NPM1mut) cells maintain aberrant gene expression. Here, we demonstrate that the histone modifiers MLL1 and DOT1L control HOX and FLT3 expression and differentiation in NPM1mut AML. Using a CRISPR/Cas9 genome editing domain screen, we show NPM1mut AML to be exceptionally dependent on the menin binding site in MLL1. Pharmacologic small-molecule inhibition of the menin-MLL1 protein interaction had profound antileukemic activity in human and murine models of NPM1mut AML. Combined pharmacologic inhibition of menin-MLL1 and DOT1L resulted in dramatic suppression of HOX and FLT3 expression, induction of differentiation, and superior activity against NPM1mut leukemia. SIGNIFICANCE: MLL1 and DOT1L are chromatin regulators that control HOX, MEIS1, and FLT3 expression and are therapeutic targets in NPM1mut AML. Combinatorial small-molecule inhibition has synergistic on-target activity and constitutes a novel therapeutic concept for this common AML subtype. Cancer Discov; 6(10); 1166-81. ©2016 AACR.See related commentary by Hourigan and Aplan, p. 1087This article is highlighted in the In This Issue feature, p. 1069.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Leukemia, Myeloid, Acute/metabolism , Methyltransferases/metabolism , Mutation , Myeloid-Lymphoid Leukemia Protein/metabolism , Nuclear Proteins/genetics , Binding Sites , CRISPR-Cas Systems , Chromatin/metabolism , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Homeodomain Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/metabolism , Nucleophosmin , Proto-Oncogene Proteins/metabolism , fms-Like Tyrosine Kinase 3/metabolism
12.
Cell Stem Cell ; 17(5): 611-23, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26412561

ABSTRACT

Mutations in acute myeloid leukemia (AML)-associated oncogenes often arise in hematopoietic stem cells (HSCs) and promote acquisition of leukemia stem cell (LSC) phenotypes. However, as LSCs often share features of lineage-restricted progenitors, the relative contribution of differentiation status to LSC transformation is unclear. Using murine MLL-AF9 and MOZ-TIF2 AML models, we show that myeloid differentiation to granulocyte macrophage progenitors (GMPs) is critical for LSC generation. Disrupting GMP formation by deleting the lineage-restricted transcription factor C/EBPa blocked normal granulocyte formation and prevented initiation of AML. However, restoring myeloid differentiation in C/EBPa mutants with inflammatory cytokines reestablished AML transformation capacity. Genomic analyses of GMPs, including gene expression and H3K79me2 profiling in conjunction with ATAC-seq, revealed a permissive genomic environment for activation of a minimal transcription program shared by GMPs and LSCs. Together, these findings show that myeloid differentiation is a prerequisite for LSC formation and AML development, providing insights for therapeutic development.


Subject(s)
Cell Differentiation , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Animals , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Knockout
13.
Biochemistry ; 41(17): 5340-7, 2002 Apr 30.
Article in English | MEDLINE | ID: mdl-11969394

ABSTRACT

The conformational stabilities of full-length colicin B and its isolated C-terminal domain were studied by guanidine hydrochloride induced unfolding. The unfolding/refolding was monitored by far-UV CD and intrinsic tryptophan fluorescence spectroscopies. At pH 7.4, the disruption of the secondary structure of full-length colicin B is monophasic, while changes in tertiary structure occur in two separate transitions. The intermediate species, which is well-populated around 2.2 M guanidine hydrochloride, exhibits secondary and tertiary structures distinct from both native and unfolded states. Whereas the domain structure of native full-length colicin B is reflected in its DSC profile, the folding intermediate of the same protein exhibits a single unresolved peak. These observations have led us to propose an unfolding model for full-length colicin B where the first transition between 0 and 2.5 M GuHCl with an associated free energy of 3 kcal/mol correlates with the partial unfolding of the R/T domain. The stability of full-length colicin B is weakened due to the presence of the R/T domain in both the native [Ortega, A., Lambotte, S., and Bechinger, B. (2001) J. Biol. Chem. 276 (17), 13563-13572] and the intermediate states. The second transition between 2.5 and 5 M GuHCl involves unfolding of the C-terminal domain (Delta = 7 kcal/mol). The isolated colicin B C-terminal domain consists of two subdomains, and the two parts of this protein fragment unfold sequentially through the formation of at least one intermediate. The significance of these results for membrane insertion of colicin B is discussed.


Subject(s)
Colicins/chemistry , Guanidine/chemistry , Peptide Fragments/chemistry , Protein Folding , Calorimetry, Differential Scanning , Circular Dichroism , Hydrogen-Ion Concentration , Protein Denaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Spectrometry, Fluorescence , Thermodynamics , Tryptophan/chemistry
14.
Proc Natl Acad Sci U S A ; 101(3): 817-22, 2004 Jan 20.
Article in English | MEDLINE | ID: mdl-14718672

ABSTRACT

Creation of fusion genes by balanced chromosomal translocations is one of the hallmarks of acute myeloid leukemia (AML) and is considered one of the key leukemogenic events in this disease. In t(12;13)(p13;q12) AML, ectopic expression of the homeobox gene CDX2 was detected in addition to expression of the ETV6-CDX2 fusion gene, generated by the chromosomal translocation. Here we show in a murine model of t(12;13)(p13;q12) AML that myeloid leukemogenesis is induced by the ectopic expression of CDX2 and not by the ETV6-CDX2 chimeric gene. Mice transplanted with bone marrow cells retrovirally engineered to express Cdx2 rapidly succumbed to fatal and transplantable AML. The transforming capacity of Cdx2 depended on an intact homeodomain and the N-terminal transactivation domain. Transplantation of bone marrow cells expressing ETV6-CDX2 failed to induce leukemia. Furthermore, coexpression of ETV6-CDX2 and Cdx2 in bone marrow cells did not accelerate the course of disease in transplanted mice compared to Cdx2 alone. These data demonstrate that activation of a protooncogene by a balanced chromosomal translocation can be the pivotal leukemogenic event in AML, characterized by the expression of a leukemia-specific fusion gene. Furthermore, these findings link protooncogene activation to myeloid leukemogenesis, an oncogenic mechanism so far associated mainly with lymphoid leukemias and lymphomas.


Subject(s)
Genes, Homeobox , Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Animals , Bone Marrow Transplantation , CDX2 Transcription Factor , Cell Transformation, Neoplastic/genetics , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 13/genetics , Disease Models, Animal , Gene Expression , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/genetics , Oncogene Proteins, Fusion/genetics , Trans-Activators , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL