Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Cardiovasc Disord ; 24(1): 94, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326736

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) frequently co-exist. There is a limited understanding on whether this coexistence is associated with distinct alterations in myocardial remodelling and mechanics. We aimed to determine if patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) represent a distinct phenotype. METHODS: In this secondary analysis of adults with HFpEF (NCT03050593), participants were comprehensively phenotyped with stress cardiac MRI, echocardiography and plasma fibroinflammatory biomarkers, and were followed for the composite endpoint (HF hospitalisation or death) at a median of 8.5 years. Those with AF were compared to sinus rhythm (SR) and unsupervised cluster analysis was performed to explore possible phenotypes. RESULTS: 136 subjects were included (SR = 75, AF = 61). The AF group was older (76 ± 8 vs. 70 ± 10 years) with less diabetes (36% vs. 61%) compared to the SR group and had higher left atrial (LA) volumes (61 ± 30 vs. 39 ± 15 mL/m2, p < 0.001), lower LA ejection fraction (EF) (31 ± 15 vs. 51 ± 12%, p < 0.001), worse left ventricular (LV) systolic function (LVEF 63 ± 8 vs. 68 ± 8%, p = 0.002; global longitudinal strain 13.6 ± 2.9 vs. 14.7 ± 2.4%, p = 0.003) but higher LV peak early diastolic strain rates (0.73 ± 0.28 vs. 0.53 ± 0.17 1/s, p < 0.001). The AF group had higher levels of syndecan-1, matrix metalloproteinase-2, proBNP, angiopoietin-2 and pentraxin-3, but lower level of interleukin-8. No difference in clinical outcomes was observed between the groups. Three distinct clusters were identified with the poorest outcomes (Log-rank p = 0.029) in cluster 2 (hypertensive and fibroinflammatory) which had equal representation of SR and AF. CONCLUSIONS: Presence of AF in HFpEF is associated with cardiac structural and functional changes together with altered expression of several fibro-inflammatory biomarkers. Distinct phenotypes exist in HFpEF which may have differing clinical outcomes.


Subject(s)
Atrial Fibrillation , Heart Failure , Multiparametric Magnetic Resonance Imaging , Humans , Adult , Stroke Volume , Matrix Metalloproteinase 2 , Ventricular Function, Left , Biomarkers , Phenotype , Prognosis
2.
Bioorg Med Chem Lett ; 91: 129373, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37315697

ABSTRACT

Efforts directed at improving potency and preparing structurally different TYK2 JH2 inhibitors from the first generation of compounds such as 1a led to the SAR study of new central pyridyl based analogs 2-4. The current SAR study resulted in the identification of 4h as a potent and selective TYK2 JH2 inhibitor with distinct structural differences from 1a. In this manuscript, the in vitro and in vivo profiles of 4h are described. The hWB IC50 of 4h was shown as 41 nM with 94% bioavailability in the mouse PK study.


Subject(s)
Pyridines , TYK2 Kinase , Mice , Animals , Structure-Activity Relationship , Pyridines/pharmacology
3.
Bioorg Med Chem Lett ; 91: 129362, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37295614

ABSTRACT

Inhibition of monoacylglycerol transferase 2 (MGAT2) has recently emerged as a potential therapeutic strategy for the treatment of metabolic diseases such as obesity, diabetes and non-alcoholic steatohepatitis (NASH). Metabolism studies with our clinical lead (1) suggested variability in in vitro glucuronidation rates in liver microsomes across species, which made projection of human doses challenging. In addition, the observation of deconjugation of the C3-C4 double bond in the dihydropyridinone ring of 1 in solution had the potential to complicate its clinical development. This report describes our lead optimization efforts in a novel pyridinone series, exemplified by compound 33, which successfully addressed both of these potential issues.


Subject(s)
Metabolic Diseases , Monoglycerides , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/chemistry , Obesity/drug therapy , Metabolic Diseases/drug therapy
4.
Bioorg Med Chem ; 85: 117273, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37030194

ABSTRACT

GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.


Subject(s)
Blood Glucose , Hyperglycemia , Rats , Animals , Receptors, G-Protein-Coupled , Glucagon-Like Peptide 1 , Hypoglycemic Agents/pharmacology , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Insulin
5.
Biochem J ; 478(9): 1689-1703, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33876829

ABSTRACT

Hepatic stellate cells (HSCs) are thought to play key roles in the development of liver fibrosis. Extensive evidence has established the concept that αV integrins are involved in the activation of latent transforming growth factor ß (TGF-ß), a master regulator of the fibrotic signaling cascade. Based on mRNA and protein expression profiling data, we found that αVß1 integrin is the most abundant member of the αV integrin family in either quiescent or TGF-ß1-activated primary human HSCs. Unexpectedly, either a selective αVß1 inhibitor, Compound 8 (C8), or a pan-αV integrin inhibitor, GSK3008348, decreased TGF-ß1-activated procollagen I production in primary human HSCs, in which the role of ß1 integrin was confirmed by ITGB1 siRNA. In contrast with an Activin receptor-like kinase 5 (Alk5) inhibitor, C8 and GSK3008348 failed to inhibit TGF-ß1 induced SMAD3 and SMAD2 phosphorylation, but inhibited TGF-ß-induced phosphorylation of ERK1/2 and STAT3, suggesting that αVß1 integrin is involved in non-canonical TGF-ß signaling pathways. Consistently, ITGB1 siRNA significantly decreased phosphorylation of ERK1/2. Furthermore, a selective inhibitor of MEK1/2 blocked TGF-ß1 induced phosphorylation of ERK1/2 and decreased TGF-ß1 induced procollagen I production, while a specific inhibitor of STAT3 had no effect on TGF-ß1 induced procollagen I production. Taken together, current data indicate that αVß1 integrin can regulate TGF-ß signaling independent of its reported role in activating latent TGF-ß. Our data further support that αVß1 inhibition is a promising therapeutic target for the treatment of liver fibrosis.


Subject(s)
Hepatic Stellate Cells/metabolism , Integrin alpha5beta1/genetics , Procollagen/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , Smad2 Protein/genetics , Transforming Growth Factor beta1/genetics , Butyrates/pharmacology , Gene Expression Regulation , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/drug effects , Humans , Integrin alpha5beta1/antagonists & inhibitors , Integrin alpha5beta1/metabolism , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 2/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Naphthyridines/pharmacology , Phosphorylation/drug effects , Primary Cell Culture , Procollagen/metabolism , Pyrazoles/pharmacology , Pyrrolidines/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
6.
Biopharm Drug Dispos ; 42(4): 137-149, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33354831

ABSTRACT

Transforming growth factor beta (TGF-ß) is a pleiotropic cytokine that has a wide array of biological effects. For decades, tumor biology implicated TGF-ß as an attractive therapeutic target due to its immunosuppressive effects. Toward this end, multiple pharmaceutical companies developed a number of drug modalities that specifically target the TGF-ß pathway. BMS-986260 is a small molecule, selective TGF-ßR1 kinase inhibitor that was under preclinical development for oncology. In vivo studies across mouse, rat, dog, and monkey and cryopreserved hepatocytes predicted human pharmacokinetics (PK) and distribution of BMS-986260. Efficacy studies of BMS-986260 were undertaken in the MC38 murine colon cancer model, and target engagement, as measured by phosphorylation of SMAD2/3, was assessed in whole blood to predict the clinical efficacious dose. The human clearance is predicted to be low, 4.25 ml/min/kg. BMS-986260 provided a durable and robust antitumor response at 3.75 mg/kg daily and 1.88 mg/kg twice-daily dosing regimens. Phosphorylation of SMAD2/3 was 3.5-fold less potent in human monocytes than other preclinical species. Taken together, the projected clinical efficacious dose was 600 mg QD or 210 mg BID for 3 days followed by a 4-day drug holiday. Mechanism-based cardiovascular findings in the rat ultimately led to the termination of BMS-986260. This study describes the preclinical PK characterization and pharmacodynamics-based efficacious dose projection of a novel small molecule TGF-ßR1 inhibitor.


Subject(s)
Adenocarcinoma/drug therapy , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Colonic Neoplasms/pathology , Dogs , Dose-Response Relationship, Drug , Female , Hepatocytes/metabolism , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Species Specificity , Tissue Distribution
7.
Physiol Genomics ; 52(4): 191-199, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32089075

ABSTRACT

Aortic valve sclerosis is a highly prevalent, poorly characterized asymptomatic manifestation of calcific aortic valve disease and may represent a therapeutic target for disease mitigation. Human aortic valve cusps and blood were obtained from 333 patients undergoing cardiac surgery (n = 236 for severe aortic stenosis, n = 35 for asymptomatic aortic valve sclerosis, n = 62 for no valvular disease), and a multiplex assay was used to evaluate protein expression across the spectrum of calcific aortic valve disease. A subset of six valvular tissue samples (n = 3 for asymptomatic aortic valve sclerosis, n = 3 for severe aortic stenosis) was used to create RNA sequencing profiles, which were subsequently organized into clinically relevant gene modules. RNA sequencing identified 182 protein-encoding, differentially expressed genes in aortic valve sclerosis vs. aortic stenosis; 85% and 89% of expressed genes overlapped in aortic stenosis and aortic valve sclerosis, respectively, which decreased to 55% and 84% when we targeted highly expressed genes. Bioinformatic analyses identified six differentially expressed genes encoding key extracellular matrix regulators: TBHS2, SPARC, COL1A2, COL1A1, SPP1, and CTGF. Differential expression of key circulating biomarkers of extracellular matrix reorganization was observed in control vs. aortic valve sclerosis (osteopontin), control vs. aortic stenosis (osteoprotegerin), and aortic valve sclerosis vs. aortic stenosis groups (MMP-2), which corresponded to valvular mRNA expression. We demonstrate distinct mRNA and protein expression underlying aortic valve sclerosis and aortic stenosis. We anticipate that extracellular matrix regulators can serve as circulating biomarkers of early calcific aortic valve disease and as novel targets for early disease mitigation, pending prospective clinical investigations.


Subject(s)
Aortic Valve Stenosis/blood , Aortic Valve Stenosis/genetics , Aortic Valve/metabolism , Aortic Valve/pathology , Calcinosis/blood , Calcinosis/genetics , Cell-Free Nucleic Acids/metabolism , Osteopontin/metabolism , Osteoprotegerin/metabolism , Transcriptome , Aged , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Base Sequence , Biomarkers/metabolism , Calcinosis/surgery , Case-Control Studies , Cell-Free Nucleic Acids/genetics , Extracellular Matrix/genetics , Female , Humans , Male , Middle Aged , Osteopontin/genetics , Osteoprotegerin/genetics , RNA, Messenger/genetics , RNA-Seq
8.
Lab Invest ; 100(8): 1111-1123, 2020 08.
Article in English | MEDLINE | ID: mdl-32203152

ABSTRACT

An ability to characterize the cellular composition and spatial organization of the tumor microenvironment (TME) using multiplexed IHC has been limited by the techniques available. Here we show the applicability of multiplexed ion beam imaging (MIBI) for cell phenotype identification and analysis of spatial relationships across numerous tumor types. Formalin-fixed paraffin-embedded (FFPE) samples from tumor biopsies were simultaneously stained with a panel of 15 antibodies, each labeled with a specific metal isotope. Multi-step processing produced images of the TME that were further segmented into single cells. Frequencies of different cell subsets and the distributions of nearest neighbor distances between them were calculated using this data. A total of 50 tumor specimens from 15 tumor types were characterized for their immune profile and spatial organization. Most samples showed infiltrating cytotoxic T cells and macrophages present amongst tumor cells. Spatial analysis of the TME in two ovarian serous carcinoma images highlighted differences in the degree of mixing between tumor and immune cells across samples. Identification of admixed PD-L1+ macrophages and PD-1+ T cells in an urothelial carcinoma sample allowed for the detailed observations of immune cell subset spatial arrangement. These results illustrate the high-parameter capability of MIBI at a sensitivity and resolution uniquely suited to understanding the complex tumor immune landscape including the spatial relationships of immune and tumor cells and expression of immunoregulatory proteins.


Subject(s)
Biomarkers, Tumor/metabolism , Diagnostic Imaging/methods , Neoplasms/diagnostic imaging , Tumor Microenvironment , B7-H1 Antigen/metabolism , Diagnosis, Differential , Humans , Macrophages/metabolism , Neoplasms/classification , Programmed Cell Death 1 Receptor/metabolism , Reproducibility of Results , Sensitivity and Specificity , T-Lymphocytes, Cytotoxic/metabolism
9.
Bioorg Med Chem Lett ; 30(19): 127466, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32763309

ABSTRACT

RORγt is the master regulator of the IL-23/IL-17 axis, a pathway that is clinically validated for the treatment of various immunological disorders. Over the last few years, our group has reported different chemotypes that potently act as inverse agonists of RORγt. One of them, the tricyclic pyrrolidine chemotype, has demonstrated biologic-like preclinical efficacy and has led to our clinical candidate BMS-986251. In this letter, we discuss the invention of an annulation reaction which enabled the synthesis of a tricyclic exocyclic amide chemotype and the identification of compounds with RORγt inverse agonist activity. Preliminary structure activity relationships are disclosed.


Subject(s)
Amides/chemistry , Hydrocarbons, Cyclic/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Sulfones/chemistry , Amides/chemical synthesis , Amides/metabolism , Animals , Cyclization , Drug Inverse Agonism , Humans , Hydrocarbons, Cyclic/chemical synthesis , Hydrocarbons, Cyclic/metabolism , Mice , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/metabolism
10.
J Pharmacol Exp Ther ; 356(2): 293-304, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26582730

ABSTRACT

The muscarinic acetylcholine receptor subtype 1 (M1) receptors play an important role in cognition and memory, and are considered to be attractive targets for the development of novel medications to treat cognitive impairments seen in schizophrenia and Alzheimer's disease. Indeed, the M1 agonist xanomeline has been shown to produce beneficial cognitive effects in both Alzheimer's disease and schizophrenia patients. Unfortunately, the therapeutic utility of xanomeline was limited by cholinergic side effects (sweating, salivation, gastrointestinal distress), which are believed to result from nonselective activation of other muscarinic receptor subtypes such as M2 and M3. Therefore, drug discovery efforts targeting the M1 receptor have focused on the discovery of compounds with improved selectivity profiles. Recently, allosteric M1 receptor ligands have been described, which exhibit excellent selectivity for M1 over other muscarinic receptor subtypes. In the current study, the following three compounds with mixed agonist/positive allosteric modulator activities that are highly functionally selective for the M1 receptor were tested in rats, dogs, and cynomologous monkeys: (3-((1S,2S)-2-hydrocyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one; 1-((4-cyano-4-(pyridin-2-yl)piperidin-1-yl)methyl)-4-oxo-4H-quinolizine-3-carboxylic acid; and (R)-ethyl 3-(2-methylbenzamido)-[1,4'-bipiperidine]-1'-carboxylate). Despite their selectivity for the M1 receptor, all three compounds elicited cholinergic side effects such as salivation, diarrhea, and emesis. These effects could not be explained by activity at other muscarinic receptor subtypes, or by activity at other receptors tested. Together, these results suggest that activation of M1 receptors alone is sufficient to produce unwanted cholinergic side effects such as those seen with xanomeline. This has important implications for the development of M1 receptor-targeted therapeutics since it suggests that dose-limiting cholinergic side effects still reside in M1 receptor selective activators.


Subject(s)
Muscarinic Agonists/metabolism , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Dose-Response Relationship, Drug , Humans , Macaca fascicularis , Male , Mice , Rats , Rats, Sprague-Dawley
12.
Bioorg Med Chem Lett ; 26(2): 662-666, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26631321

ABSTRACT

A novel cyclohexenyl series of CCR2 antagonists has been discovered. This series of small, rigid compounds exhibits submicromolar binding affinity for CCR2. Modification of the substituents on the cyclohexene ring led to the identification of potent CCR2 antagonists. Progress from initial lead 5 (IC50=700nM) to (-)-38 (IC50=9.0nM) is discussed.


Subject(s)
Cyclohexenes/chemistry , Cyclohexenes/pharmacology , Receptors, CCR2/antagonists & inhibitors , Cyclohexenes/chemical synthesis , Drug Discovery , Humans , Models, Molecular , Receptors, CCR2/metabolism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 26(10): 2470-2474, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27055941

ABSTRACT

The synthesis and structure-activity relationship (SAR) of a series of pyridyl-isoxazole based agonists of S1P1 are discussed. Compound 5b provided potent in vitro activity with selectivity, had an acceptable pharmacokinetic profile, and demonstrated efficacy in a dose dependent manner when administered orally in a rodent model of arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Lysophospholipids/agonists , Sphingosine/analogs & derivatives , Structure-Activity Relationship , Administration, Oral , Animals , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Humans , Isoxazoles/chemistry , Isoxazoles/pharmacology , Lymphocyte Count , Male , Rats, Inbred Lew , Receptors, Lysosphingolipid/agonists , Sphingosine/agonists
14.
J Pharmacol Exp Ther ; 354(3): 340-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26109678

ABSTRACT

The present studies represent the first published report of a dopamine D1 positive allosteric modulator (PAM). D1 receptors have been proposed as a therapeutic target for the treatment of cognitive deficits associated with schizophrenia. However, the clinical utility of orthosteric agonist compounds is limited by cardiovascular side effects, poor pharmacokinetics, lack of D1 selectivity, and an inverted dose response. A number of these challenges may be overcome by utilization of a selective D1 PAM. The current studies describe two chemically distinct D1 PAMs: Compound A [1-((rel-1S,3R,6R)-6-(benzo[d][1,3]dioxol-5-yl)bicyclo[4.1.0]heptan-3-yl)-4-(2-bromo-5-chlorobenzyl)piperazine] and Compound B [rel-(9R,10R,12S)-N-(2,6-dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxamide]. Compound A shows pure PAM activity, with an EC50 of 230 nM and agonist activity at the D2 receptor in D2-expressing human embryonic kidney cells. Compound B shows superior potency (EC50 of 43 nM) and selectivity for D1 versus D2 dopamine receptors. Unlike Compound A, Compound B is selective for human and nonhuman primate D1 receptors, but lacks activity at the rodent (rat and mouse) D1 receptors. Using molecular biology techniques, a single amino acid was identified at position 130, which mediates the species selectivity of Compound B. These data represent the first described D1-selective PAMs and define critical amino acids that regulate species selectivity.


Subject(s)
Allosteric Regulation/drug effects , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Animals , CHO Cells , Cell Line , Cells, Cultured , Cricetulus , HEK293 Cells , Humans , Mice , Rats , Schizophrenia/drug therapy
15.
Bioorg Med Chem Lett ; 25(9): 1905-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25857941

ABSTRACT

This Letter describes synthesis, SAR, and biological activity of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides as inhibitors of γ-secretase mediated signaling of Notch receptors. Optimization of this series led to the identification of BMS-871 (compound 30) which displayed robust in vivo efficacy in Notch-dependent leukemia and solid tumor xenograft models.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Benzodiazepinones/administration & dosage , Benzodiazepinones/pharmacology , Receptors, Notch/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Benzodiazepinones/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Receptors, Notch/metabolism , Structure-Activity Relationship
16.
Drug Discov Today Technol ; 18: 30-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26723890

ABSTRACT

GPCRs remain one of the most important classes of drug targets and, therefore, GPCR assay development and high-throughput GPCR ligand profiling continue to be major efforts in drug discovery. This article focuses on GPCR platform strategies from hits to leads with miniaturized complex pharmacology approaches. Three main areas of GPCR profiling are discussed including pharmacologically relevant hit identification, the pharmacology dossier applied to parallel structure activity and structure liability relationships and high-throughput mechanism studies from genotype to phenotype.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries , Animals , Binding Sites , Genotype , Humans , Ligands , Protein Binding , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
17.
Drug Metab Dispos ; 42(4): 566-74, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24115749

ABSTRACT

The bile salt export pump (BSEP) is located on the canalicular plasma membrane of hepatocytes and plays an important role in the biliary clearance of bile acids (BAs). Therefore, any drug or new chemical entity that inhibits BSEP has the potential to cause cholestasis and possibly liver injury. In reality, however, one must consider the complexity of the BA pool, BA enterohepatic recirculation (EHR), extrahepatic (renal) BA clearance, and the interplay of multiple participant transporters and enzymes (e.g., sulfotransferase 2A1, multidrug resistance-associated protein 2, 3, and 4). Moreover, BAs undergo extensive enzyme-catalyzed amidation and are subjected to metabolism by enterobacteria during EHR. Expression of the various enzymes and transporters described above is governed by nuclear hormone receptors (NHRs) that mount an adaptive response when intracellular levels of BAs are increased. The intracellular trafficking of transporters, and their ability to mediate the vectorial transport of BAs, is governed by specific kinases also. Finally, bile flow, micelle formation, canalicular membrane integrity, and BA clearance can be influenced by the inhibition of multidrug resistant protein 3- or ATPase-aminophospholipid transporter-mediated phospholipid flux. Consequently, when screening compounds in a discovery setting or conducting mechanistic studies to address clinical findings, one has to consider the direct (inhibitory) effect of the parent drug and metabolites on multiple BA transporters, as well as inhibition of BA sulfation and amidation and NHR function. Vectorial BA transport, in addition to BA EHR and homoeostasis, could also be impacted by drug-dependent modulation of kinases and enterobacteria.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Cholestasis/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11 , ATP-Binding Cassette Transporters/metabolism , Bile Acids and Salts/blood , Bile Acids and Salts/urine , Bile Canaliculi/metabolism , Biological Transport , Chemical and Drug Induced Liver Injury/complications , Cholestasis/complications , Feces/chemistry , Hepatocytes/metabolism , Humans , Models, Biological
18.
Bioorg Med Chem Lett ; 24(7): 1843-5, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24613378

ABSTRACT

We describe novel alkylsulfones as potent CCR2 antagonists with reduced hERG channel activity and improved pharmacokinetics over our previously described antagonists. Several of these new alkylsulfones have a profile that includes functional antagonism of CCR2, in vitro microsomal stability, and oral bioavailability. With this improved profile, we demonstrate that two of these antagonists, 2 and 12, are orally efficacious in an animal model of inflammatory recruitment.


Subject(s)
Receptors, CCR2/antagonists & inhibitors , Sulfones/chemistry , Animals , Cyclohexanes , Dose-Response Relationship, Drug , Humans , Mice , Molecular Conformation , Structure-Activity Relationship
19.
SLAS Discov ; 29(2): 100146, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311110

ABSTRACT

Here we offer perspectives on phenotypic screening based on a wide-ranging discussion entitled "Phenotypic screening, target ID, and multi-omics: enabling more disease relevance in early discovery?" at the Screen Design and Assay Technology Special Interest Group Meeting at the 2023 SLAS Conference. During the session, the authors shared their own experience from within their respective organizations, followed by an open discussion with the audience. It was recognized that while substantial progress has been made towards translating disease-relevant phenotypic early discovery into clinical success, there remain significant operational and scientific challenges to implementing phenotypic screening efforts, and improving translation of screening hits comes with substantial resource demands and organizational commitment. This Perspective assesses progress, highlights pitfalls, and offers possible solutions to help unlock the therapeutic potential of phenotypic drug discovery. Areas explored comprise screening and hit validation strategy, choice of cellular model, moving beyond 2D cell culture into three dimensions, and leveraging high-dimensional data sets downstream of phenotypic screens.


Subject(s)
Drug Discovery , Public Opinion , Drug Discovery/methods , Phenotype
20.
Cells Dev ; 179: 203941, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39038657

ABSTRACT

The extracellular matrix (ECM) is a critical component of tissue where it provides structural and signaling support to cells. Its dysregulation and accumulation lead to fibrosis, a major clinical challenge underlying many diseases that currently has little effective treatment. An understanding of the key molecular initiators of fibrosis would be both diagnostically useful and provide potential targets for therapeutics. The ECM protein fibronectin (FN) is upregulated in fibrotic conditions and other ECM proteins depend on assembly of a FN foundational ECM for their matrix incorporation. We used cell culture and in vivo models to investigate the role of FN in the progression of lung fibrosis. We confirmed that normal human lung fibroblasts (NHLFs) treated with transforming growth factor-beta (TGF-ß) to stimulate fibrotic gene expression significantly increased both FN expression and its assembly into a matrix. We found that levels of alternatively spliced EDA and EDB exons were proportional to the increase in total FN RNA and protein showing that inclusion of these exons is not enhanced by TGF-ß stimulation. RNA-sequencing identified 43 core matrisome genes that were significantly up- or down-regulated by TGF-ß treatment and a Luminex immunoassay demonstrated increased levels of ECM proteins in conditioned medium of TGF-ß-treated NHLFs. Interestingly, among the regulated core matrisome genes, 16 encode known FN-binding proteins and, of these, insulin-like growth factor binding protein 3 (IGFBP3) was most highly up-regulated. To link the NHLF results with in vivo disease, we analyzed lung tissue and bronchoalveolar lavage fluid from bleomycin-treated mice and found dramatically higher levels of FN and the FN-binding proteins IGFBP3, tenascin-C, and type I collagen in fibrotic conditions compared to controls. Altogether, our data identify a set of FN-binding proteins whose upregulation is characteristic of IPF and suggest that FN provides the foundational matrix for deposition of these proteins as fibrosis develops.


Subject(s)
Fibronectins , Idiopathic Pulmonary Fibrosis , Transforming Growth Factor beta , Humans , Fibronectins/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Animals , Mice , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Fibroblasts/metabolism , Lung/pathology , Lung/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 3/genetics , Extracellular Matrix/metabolism , Alternative Splicing/genetics , Up-Regulation/drug effects , Up-Regulation/genetics , Cells, Cultured , Bleomycin/pharmacology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL