Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542064

ABSTRACT

Recent evidence indicates that experimental brain ischemia leads to dementia with an Alzheimer's disease-like type phenotype and genotype. Based on the above evidence, it was hypothesized that brain ischemia may contribute to the development of Alzheimer's disease. Brain ischemia and Alzheimer's disease are two diseases characterized by similar changes in the hippocampus that are closely related to memory impairment. Following brain ischemia in animals and humans, the presence of amyloid plaques in the extracellular space and intracellular neurofibrillary tangles was revealed. The phenomenon of tau protein hyperphosphorylation is a similar pathological feature of both post-ischemic brain injury and Alzheimer's disease. In Alzheimer's disease, the phosphorylated Thr231 motif in tau protein has two distinct trans and cis conformations and is the primary site of tau protein phosphorylation in the pre-entanglement cascade and acts as an early precursor of tau protein neuropathology in the form of neurofibrillary tangles. Based on the latest publication, we present a similar mechanism of the formation of neurofibrillary tangles after brain ischemia as in Alzheimer's disease, established on trans- and cis-phosphorylation of tau protein, which ultimately influences the development of tauopathy.


Subject(s)
Alzheimer Disease , Brain Ischemia , Animals , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Neurofibrillary Tangles/metabolism , Brain/metabolism , Phosphorylation , Brain Ischemia/metabolism
2.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38279289

ABSTRACT

The article presents the latest data on pathological changes after cerebral ischemia caused by cardiac arrest. The data include amyloid accumulation, tau protein modification, neurodegenerative and cognitive changes, and gene and protein changes associated with Alzheimer's disease. We present the latest data on the dysregulation of genes related to the metabolism of the amyloid protein precursor, tau protein, autophagy, mitophagy, apoptosis, and amyloid and tau protein transport genes. We report that neuronal death after cerebral ischemia due to cardiac arrest may be dependent and independent of caspase. Moreover, neuronal death dependent on amyloid and modified tau protein has been demonstrated. Finally, the results clearly indicate that changes in the expression of the presented genes play an important role in acute and secondary brain damage and the development of post-ischemic brain neurodegeneration with the Alzheimer's disease phenotype. The data indicate that the above genes may be a potential therapeutic target for brain therapy after ischemia due to cardiac arrest. Overall, the studies show that the genes studied represent attractive targets for the development of new therapies to minimize ischemic brain injury and neurological dysfunction. Additionally, amyloid-related genes expression and tau protein gene modification after cerebral ischemia due to cardiac arrest are useful in identifying ischemic mechanisms associated with Alzheimer's disease. Cardiac arrest illustrates the progressive, time- and area-specific development of neuropathology in the brain with the expression of genes responsible for the processing of amyloid protein precursor and the occurrence of tau protein and symptoms of dementia such as those occurring in patients with Alzheimer's disease. By carefully examining the common genetic processes involved in these two diseases, these data may help unravel phenomena associated with the development of Alzheimer's disease and neurodegeneration after cerebral ischemia and may lead future research on Alzheimer's disease or cerebral ischemia in new directions.


Subject(s)
Alzheimer Disease , Brain Ischemia , Heart Arrest , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Brain Ischemia/complications , Brain Ischemia/genetics , Brain Ischemia/metabolism , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Cerebral Infarction/pathology , Reperfusion , Heart Arrest/complications , Heart Arrest/genetics , Heart Arrest/pathology , Amyloid beta-Peptides/metabolism
3.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445917

ABSTRACT

The aim of this review is to present evidence of the impact of ischemic changes in the blood-brain barrier on the maturation of post-ischemic brain neurodegeneration with features of Alzheimer's disease. Understanding the processes involved in the permeability of the post-ischemic blood-brain barrier during recirculation will provide clinically relevant knowledge regarding the neuropathological changes that ultimately lead to dementia of the Alzheimer's disease type. In this review, we try to distinguish between primary and secondary neuropathological processes during and after ischemia. Therefore, we can observe two hit stages that contribute to Alzheimer's disease development. The onset of ischemic brain pathology includes primary ischemic neuronal damage and death followed by the ischemic injury of the blood-brain barrier with serum leakage of amyloid into the brain tissue, leading to increased ischemic neuronal susceptibility to amyloid neurotoxicity, culminating in the formation of amyloid plaques and ending in full-blown dementia of the Alzheimer's disease type.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Blood-Brain Barrier/metabolism , Blood Platelets/metabolism , Brain/metabolism , Ischemia/pathology , Amyloid , Amyloidogenic Proteins , Amyloid beta-Peptides/metabolism
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835284

ABSTRACT

Epilepsy is a chronic disease of the central nervous system characterized by recurrent epileptic seizures. As a result of epileptic seizure or status epilepticus oxidants are excessively formed, which may be one of the causes of neuronal death. Given the role of oxidative stress in epileptogenesis, as well as the participation of this process in other neurological conditions, we decided to review the latest state of knowledge regarding the relationship between selected newer antiepileptic drugs (AEDs), also known as antiseizure drugs, and oxidative stress. The literature review indicates that drugs enhancing GABA-ergic transmission (e.g., vigabatrin, tiagabine, gabapentin, topiramate) or other antiepileptics (e.g., lamotrigine, levetiracetam) reduce neuronal oxidation markers. In particular, levetiracetam may produce ambiguous effects in this regard. However, when a GABA-enhancing drug was applied to the healthy tissue, it tended to increase oxidative stress markers in a dose-dependent manner. Studies on diazepam have shown that it exerts a neuroprotective effect in a "U-shaped" dose-dependent manner after excitotoxic or oxidative stress. Its lower concentrations are insufficient to protect against neuronal damage, while higher concentrations produce neurodegeneration. Therefore, a conclusion follows that newer AEDs, enhancing GABA-ergic neurotransmission, may act similarly to diazepam, causing neurodegeneration and oxidative stress when used in high doses.


Subject(s)
Epilepsy, Generalized , Epilepsy , Humans , Anticonvulsants/therapeutic use , Levetiracetam/therapeutic use , Carbamazepine/therapeutic use , Fructose , Triazines/therapeutic use , Epilepsy/drug therapy , Gabapentin/therapeutic use , Seizures/drug therapy , Diazepam
5.
Int J Mol Sci ; 24(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139396

ABSTRACT

Experimental studies reveal that caffeine (trimethylxanthine) at subconvulsive doses, distinctly reduced the anticonvulsant activity of numerous antiseizure medications (ASMs) in rodents, oxcarbazepine, tiagabine and lamotrigine being the exceptions. Clinical data based on low numbers of patients support the experimental results by showing that caffeine (ingested in high quantities) may sharply increase seizure frequency, considerably reducing the quality of patients' lives. In contrast, this obviously negative activity of caffeine was not found in clinical studies involving much higher numbers of patients. ASMs vulnerable to caffeine in experimental models of seizures encompass carbamazepine, phenobarbital, phenytoin, valproate, gabapentin, levetiracetam, pregabalin and topiramate. An inhibition of R-calcium channels by lamotrigine and oxcarbazepine may account for their resistance to the trimethylxanthine. This assumption, however, is complicated by the fact that topiramate also seems to be a blocker of R-calcium channels. A question arises why large clinical studies failed to confirm the results of experimental and case-report studies. A possibility exists that the proportion of patients taking ASMs resistant to caffeine may be significant and such patients may be sufficiently protected against the negative activity of caffeine.


Subject(s)
Anticonvulsants , Caffeine , Humans , Lamotrigine/pharmacology , Lamotrigine/therapeutic use , Oxcarbazepine/therapeutic use , Caffeine/pharmacology , Caffeine/therapeutic use , Topiramate/therapeutic use , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Seizures/drug therapy , Calcium Channels
6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614305

ABSTRACT

Alzheimer's disease is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, emerging evidence suggests that neuroinflammation, mediated notably by activated neuroglial cells, neutrophils, and macrophages, also plays an important role in the pathogenesis of Alzheimer's disease. Therefore, understanding the interplay between the nervous and immune systems might be the key to the prevention or delay of Alzheimer's disease progression. One of the most important mechanisms determining gliogenic cell fate is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway that is influenced by the overactivation of microglia and astrocytes. The JAK/STAT signaling pathway is one of the critical factors that promote neuroinflammation in neurodegenerative diseases such as Alzheimer's disease by initiating innate immunity, orchestrating adaptive immune mechanisms, and finally, constraining neuroinflammatory response. Since a chronic neuroinflammatory environment in the brain is a hallmark of Alzheimer's disease, understanding the process would allow establishing the underlying role of neuroinflammation, then estimating the prognosis of Alzheimer's disease development and finding a new potential treatment target. In this review, we highlight the recent advances in the potential role of JAK/STAT signaling in neurological diseases with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/etiology , Alzheimer Disease/therapy , Janus Kinases/metabolism , Neuroinflammatory Diseases , STAT Transcription Factors/metabolism , Signal Transduction/physiology
7.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570596

ABSTRACT

Neurodegeneration of the brain after ischemia is a major cause of severe, long-term disability, dementia, and mortality, which is a global problem. These phenomena are attributed to excitotoxicity, changes in the blood-brain barrier, neuroinflammation, oxidative stress, vasoconstriction, cerebral amyloid angiopathy, amyloid plaques, neurofibrillary tangles, and ultimately neuronal death. In addition, genetic factors such as post-ischemic changes in genetic programming in the expression of amyloid protein precursor, ß-secretase, presenilin-1 and -2, and tau protein play an important role in the irreversible progression of post-ischemic neurodegeneration. Since current treatment is aimed at preventing symptoms such as dementia and disability, the search for causative therapy that would be helpful in preventing and treating post-ischemic neurodegeneration of Alzheimer's disease proteinopathy is ongoing. Numerous studies have shown that the high contents of flavonoids and phenolic acids in honey have antioxidant, anti-inflammatory, anti-apoptotic, anti-amyloid, anti-tau protein, anticholinesterase, serotonergic, and AMPAK activities, influencing signal transmission and neuroprotective effects. Notably, in many preclinical studies, flavonoids and phenolic acids, the main components of honey, were also effective when administered after ischemia, suggesting their possible use in promoting recovery in stroke patients. This review provides new insight into honey's potential to prevent brain ischemia as well as to ameliorate damage in advanced post-ischemic brain neurodegeneration.


Subject(s)
Alzheimer Disease , Honey , Humans , Alzheimer Disease/metabolism , Apitherapy/adverse effects , Flavonoids/therapeutic use , Flavonoids/metabolism , Brain/metabolism , tau Proteins/metabolism , Ischemia/metabolism , Amyloid beta-Peptides/metabolism
8.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743035

ABSTRACT

Currently, there is a lot of public interest in naturally occurring substances with medicinal properties that are minimally toxic, readily available and have an impact on health. Over the past decade, molecular hydrogen has gained the attention of both preclinical and clinical researchers. The death of pyramidal neurons in especially the CA1 area of the hippocampus, increased permeability of the blood-brain barrier, neuroinflammation, amyloid accumulation, tau protein dysfunction, brain atrophy, cognitive deficits and dementia are considered an integral part of the phenomena occurring during brain neurodegeneration after ischemia. This review focuses on assessing the current state of knowledge about the neuroprotective effects of molecular hydrogen following ischemic brain injury. Recent studies in animal models of focal or global cerebral ischemia and cerebral ischemia in humans suggest that hydrogen has pleiotropic neuroprotective properties. One potential mechanism explaining some of the general health benefits of using hydrogen is that it may prevent aging-related changes in cellular proteins such as amyloid and tau protein. We also present evidence that, following ischemia, hydrogen improves cognitive and neurological deficits and prevents or delays the onset of neurodegenerative changes in the brain. The available evidence suggests that molecular hydrogen has neuroprotective properties and may be a new therapeutic agent in the treatment of neurodegenerative diseases such as neurodegeneration following cerebral ischemia with progressive dementia. We also present the experimental and clinical evidence for the efficacy and safety of hydrogen use after cerebral ischemia. The therapeutic benefits of gas therapy open up new promising directions in breaking the translational barrier in the treatment of ischemic stroke.


Subject(s)
Alzheimer Disease , Brain Ischemia , Alzheimer Disease/drug therapy , Amyloid , Amyloidogenic Proteins , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Fantasy , Hydrogen/pharmacology , Hydrogen/therapeutic use , Ischemia , Neuroprotection , tau Proteins/metabolism
9.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163292

ABSTRACT

An estimated 60 million people worldwide suffer from epilepsy, half of whom are women. About one-third of women with epilepsy are of childbearing age. The childbirth rate in women with epilepsy is about 20-40% lower compared to that of the general population, which may be partly due to a lower number of these women being in relationships. Lower fertility in women with epilepsy may be linked to the disease itself, but it is mainly a result of the treatment provided. Valproate, as an antiepileptic drug inhibiting histone deacetylases, may affect the expression of genes associated with cell cycle control and cellular differentiation. Evidently, this drug is associated with the risk of malformations although other antiepileptic drugs (AEDs) may also trigger birth defects, however, to a lower degree. Valproate (and to a certain degree other AEDs) may induce autism spectrum disorders and attention deficit hyperactivity disorder. The main mechanism responsible for all negative effects of prenatal exposure to valproate seems inhibition of histone deacetylases. Animal studies show a reduction in the expression of genes involved in social behavior and an increase in hippocampal cytokines. Valproate-induced oxidative stress may also contribute to neural tube defects. Interestingly, paternal exposure to this AED in mice may trigger neurodevelopmental disorders as well although a population-based cohort study does not confirm this effect. To lower the risk of congenital malformations and neurodevelopmental disorders, a single AED at the optimal dose and supplementation with folic acid is recommended. VPA should be avoided in women of childbearing age and especially during pregnancy.


Subject(s)
Epilepsy/drug therapy , Valproic Acid/adverse effects , Abnormalities, Drug-Induced/drug therapy , Anticonvulsants/therapeutic use , Attention Deficit Disorder with Hyperactivity/chemically induced , Autism Spectrum Disorder/chemically induced , Epilepsy/complications , Female , Folic Acid/therapeutic use , Histone Deacetylase Inhibitors/adverse effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Neural Tube Defects , Pregnancy , Pregnancy Complications/drug therapy , Prenatal Exposure Delayed Effects/chemically induced , Valproic Acid/therapeutic use
10.
Int J Mol Sci ; 22(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477609

ABSTRACT

The intestinal microbiome, the largest reservoir of microorganisms in the human body, plays an important role in neurological development and aging as well as in brain disorders such as an ischemic stroke. Increasing knowledge about mediators and triggered pathways has contributed to a better understanding of the interaction between the gut-brain axis and the brain-gut axis. Intestinal bacteria produce neuroactive compounds and can modulate neuronal function, which affects behavior after an ischemic stroke. In addition, intestinal microorganisms affect host metabolism and immune status, which in turn affects the neuronal network in the ischemic brain. Here we discuss the latest results of animal and human research on two-way communication along the gut-brain axis in an ischemic stroke. Moreover, several reports have revealed the impact of an ischemic stroke on gut dysfunction and intestinal dysbiosis, highlighting the delicate play between the brain, intestines and microbiome after this acute brain injury. Despite our growing knowledge of intestinal microflora in shaping brain health, host metabolism, the immune system and disease progression, its therapeutic options in an ischemic stroke have not yet been fully utilized. This review shows the role of the gut microflora-brain axis in an ischemic stroke and assesses the potential role of intestinal microflora in the onset, progression and recovery post-stroke.


Subject(s)
Dysbiosis/genetics , Gastrointestinal Microbiome/genetics , Ischemic Stroke/genetics , Microbiota/genetics , Aging/genetics , Aging/pathology , Brain/metabolism , Brain/microbiology , Brain/pathology , Dysbiosis/microbiology , Humans , Ischemic Stroke/epidemiology , Ischemic Stroke/microbiology
11.
Int J Mol Sci ; 22(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922467

ABSTRACT

One of the leading causes of neurological mortality, disability, and dementia worldwide is cerebral ischemia. Among the many pathological phenomena, the immune system plays an important role in the development of post-ischemic degeneration of the brain, leading to the development of neuroinflammatory changes in the brain. After cerebral ischemia, the developing neuroinflammation causes additional damage to the brain cells, but on the other hand it also plays a beneficial role in repair activities. Inflammatory mediators are sources of signals that stimulate cells in the brain and promote penetration, e.g., T lymphocytes, monocytes, platelets, macrophages, leukocytes, and neutrophils from systemic circulation to the brain ischemic area, and this phenomenon contributes to further irreversible ischemic brain damage. In this review, we focus on the issues related to the neuroinflammation that occurs in the brain tissue after ischemia, with particular emphasis on ischemic stroke and its potential treatment strategies.


Subject(s)
Brain Ischemia/complications , Inflammation/etiology , Neurodegenerative Diseases/complications , Neuroimmunomodulation , Animals , Humans , Inflammation/pathology
12.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008731

ABSTRACT

In this review, we summarize, inter alia, the protein and gene changes associated with Alzheimer's disease and their role in post-ischemic hippocampal neurodegeneration. In the hippocampus, studies have revealed dysregulation of the genes for the amyloid protein precursor metabolism and tau protein that is identical in nature to Alzheimer's disease. Data indicate that amyloid and tau protein, derived from brain tissue and blood due to increased permeability of the blood-brain barrier after ischemia, play a key role in post-ischemic neurodegeneration of the hippocampus, with concomitant development of full-blown dementia. Thus, the knowledge of new neurodegenerative mechanisms that cause neurodegeneration of the hippocampus after ischemia, resembling Alzheimer's disease proteinopathy, will provide the most important therapeutic development goals to date.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain Ischemia/complications , Hippocampus/pathology , Nerve Degeneration/etiology , tau Proteins/metabolism , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Animals , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Brain Ischemia/physiopathology , Hippocampus/physiopathology , Humans , Nerve Degeneration/complications , Nerve Degeneration/physiopathology
13.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671097

ABSTRACT

Recent evidence suggests that amyloid and tau protein are of vital importance in post-ischemic death of CA1 pyramidal neurons of the hippocampus. In this review, we summarize protein alterations associated with Alzheimer's disease and their gene expression (amyloid protein precursor and tau protein) after cerebral ischemia, as well as their roles in post-ischemic hippocampus neurodegeneration. In recent years, multiple studies aimed to elucidate the post-ischemic processes in the development of hippocampus neurodegeneration. Their findings have revealed the dysregulation of genes for amyloid protein precursor, ß-secretase, presenilin 1 and 2, tau protein, autophagy, mitophagy, and apoptosis identical in nature to Alzheimer's disease. Herein, we present the latest data showing that amyloid and tau protein associated with Alzheimer's disease and their genes play a key role in post-ischemic neurodegeneration of the hippocampus with subsequent development of dementia. Therefore, understanding the underlying process for the development of post-ischemic CA1 area neurodegeneration in the hippocampus in conjunction with Alzheimer's disease-related proteins and genes will provide the most important therapeutic development goals to date.


Subject(s)
Alzheimer Disease/pathology , Amyloid/metabolism , Gene Expression Regulation , Hippocampus/pathology , Ischemia/pathology , Neurodegenerative Diseases/pathology , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Hippocampus/metabolism , Humans , Ischemia/genetics , Ischemia/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , tau Proteins/genetics
14.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575901

ABSTRACT

The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.


Subject(s)
Anticonvulsants/pharmacology , Biomarkers , Disease Susceptibility , Drug Discovery , Epilepsy/etiology , Epilepsy/metabolism , Animals , Anticonvulsants/chemistry , Antioxidants/administration & dosage , Combined Modality Therapy , Dietary Supplements , Drug Discovery/methods , Epilepsy/diagnosis , Epilepsy/drug therapy , Humans , Molecular Targeted Therapy , Proto-Oncogene Proteins c-fos/antagonists & inhibitors , Proto-Oncogene Proteins c-fos/metabolism
15.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32366028

ABSTRACT

Post-ischemic brain damage is associated with the deposition of folding proteins such as the amyloid and tau protein in the intra- and extracellular spaces of brain tissue. In this review, we summarize the protein changes associated with Alzheimer's disease and their gene expression (amyloid protein precursor and tau protein) after ischemia-reperfusion brain injury and their role in the post-ischemic injury. Recent advances in understanding the post-ischemic neuropathology have revealed dysregulation of amyloid protein precursor, α-secretase, ß-secretase, presenilin 1 and 2, and tau protein genes after ischemic brain injury. However, reduced expression of the α-secretase in post-ischemic brain causes neurons to be less resistant to injury. In this review, we present the latest evidence that proteins associated with Alzheimer's disease and their genes play a key role in progressive brain damage due to ischemia and reperfusion, and that an ischemic episode is an essential and leading supplier of proteins and genes associated with Alzheimer's disease in post-ischemic brain. Understanding the underlying processes of linking Alzheimer's disease-related proteins and their genes in post-ischemic brain injury with the risk of developing Alzheimer's disease will provide the most significant goals for therapeutic development to date.


Subject(s)
Alzheimer Disease/metabolism , Brain Ischemia/metabolism , Genomics/methods , Proteomics/methods , tau Proteins/metabolism , Alzheimer Disease/genetics , Animals , Brain Ischemia/genetics , Humans , tau Proteins/genetics
16.
Int J Mol Sci ; 21(13)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605320

ABSTRACT

Current evidence indicates that postischemic brain injury is associated with the accumulation of folding proteins, such as amyloid and tau protein, in the intra- and extracellular spaces of neuronal cells. In this review, we summarize protein changes associated with Alzheimer's disease and their gene expression (amyloid protein precursor and tau protein) after brain ischemia, and their roles in the postischemic period. Recent advances in understanding the postischemic mechanisms in development of neurodegeneration have revealed dysregulation of amyloid protein precursor, α-, ß- and γ-secretase and tau protein genes. Reduced expression of the α-secretase gene after brain ischemia with recirculation causes neuronal cells to be less resistant to injury. We present the latest data that Alzheimer's disease-related proteins and their genes play a crucial role in postischemic neurodegeneration. Understanding the underlying processes of linking Alzheimer's disease-related proteins and their genes in development of postischemic neurodegeneration will provide the most significant goals to date for therapeutic development.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Brain Ischemia/complications , Neurons/pathology , tau Proteins/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Animals , Humans , Neurons/metabolism
17.
Int J Mol Sci ; 21(2)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947633

ABSTRACT

Currently available pharmacological treatment of post-ischemia-reperfusion brain injury has limited effectiveness. This review provides an assessment of the current state of neurodegeneration treatment due to ischemia-reperfusion brain injury and focuses on the role of curcumin in the diet. The purpose of this review was to provide a comprehensive overview of what was published about the benefits of curcumin influence on post-ischemic brain damage. Some data on the clinical benefits of curcumin treatment of post-ischemic brain in terms of clinical symptoms and adverse reactions have been reviewed. The data in this review contributes to a better understanding of the potential benefits of curcumin in the treatment of neurodegenerative changes after ischemia and informs scientists, clinicians, and patients, as well as their families and caregivers about the possibilities of such treatment. Due to the pleotropic properties of curcumin, including anti-amyloid, anti-tau protein hyperphosphorylation, anti-inflammatory, anti-apoptotic, and neuroprotective action, as well as increasing neuronal lifespan and promoting neurogenesis, curcumin is a promising candidate for the treatment of post-ischemic neurodegeneration with misfolded proteins accumulation. In this way, it may gain interest as a potential therapy to prevent the development of neurodegenerative changes after cerebral ischemia. In addition, it is a safe substance and inexpensive, easily accessible, and can effectively penetrate the blood-brain barrier and neuronal membranes. In conclusion, the evidence available in a review of the literature on the therapeutic potential of curcumin provides helpful insight into the potential clinical utility of curcumin in the treatment of neurological neurodegenerative diseases with misfolded proteins. Therefore, curcumin may be a promising supplementary agent against development of neurodegeneration after brain ischemia in the future. Indeed, there is a rational scientific basis for the use of curcumin for the prophylaxis and treatment of post-ischemic neurodegeneration.


Subject(s)
Brain Ischemia/complications , Curcumin/pharmacology , Neurodegenerative Diseases/etiology , Neuroprotective Agents/pharmacology , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Animals , Brain Ischemia/metabolism , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Neurogenesis/drug effects , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Protein Aggregates , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/metabolism , tau Proteins/metabolism
18.
Int J Mol Sci ; 21(7)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231010

ABSTRACT

Generally, the prevalence of epilepsy does not exceed 0.9% of the population and approximately 70% of epilepsy patients may be adequately controlled with antiepileptic drugs (AEDs). Moreover, status epilepticus (SE) or even a single seizure may produce neurodegeneration within the brain and SE has been recognized as one of acute brain insults leading to acquired epilepsy via the process of epileptogenesis. Two questions thus arise: (1) Are AEDs able to inhibit SE-induced neurodegeneration? and (2) if so, can a probable neuroprotective potential of particular AEDs stop epileptogenesis? An affirmative answer to the second question would practically point to the preventive potential of a given neuroprotective AED following acute brain insults. The available experimental data indicate that diazepam (at low and high doses), gabapentin, pregabalin, topiramate and valproate exhibited potent or moderate neuroprotective effects in diverse models of SE in rats. However, only diazepam (at high doses), gabapentin and pregabalin exerted some protective activity against acquired epilepsy (spontaneous seizures). As regards valproate, its effects on spontaneous seizures were equivocal. With isobolography, some supra-additive combinations of AEDs have been delineated against experimental seizures. One of such combinations, levetiracetam + topiramate proved highly synergistic in two models of seizures and this particular combination significantly inhibited epileptogenesis in rats following status SE. Importantly, no neuroprotection was evident. It may be strikingly concluded that there is no correlation between neuroprotection and antiepileptogenesis. Probably, preclinically verified combinations of AEDs may be considered for an anti-epileptogenic therapy.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Animals , Anticonvulsants/pharmacology , Epilepsy/epidemiology , Epilepsy/pathology , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Seizures/drug therapy , Seizures/pathology , Status Epilepticus/drug therapy , Status Epilepticus/pathology
19.
Int J Mol Sci ; 20(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31405021

ABSTRACT

At present, the prevalence of Alzheimer's disease, a devastating neurodegenerative disorder, is increasing. Although the mechanism of the underlying pathology is not fully uncovered, in the last years, there has been significant progress in its understanding. This includes: Progressive deposition of amyloid ß-peptides in amyloid plaques and hyperphosphorylated tau protein in intracellular as neurofibrillary tangles; neuronal loss; and impaired glucose metabolism. Due to a lack of effective prevention and treatment strategy, emerging evidence suggests that dietary and metabolic interventions could potentially target these issues. The ketogenic diet is a very high-fat, low-carbohydrate diet, which has a fasting-like effect bringing the body into a state of ketosis. The presence of ketone bodies has a neuroprotective impact on aging brain cells. Moreover, their production may enhance mitochondrial function, reduce the expression of inflammatory and apoptotic mediators. Thus, it has gained interest as a potential therapy for neurodegenerative disorders like Alzheimer's disease. This review aims to examine the role of the ketogenic diet in Alzheimer's disease progression and to outline specific aspects of the nutritional profile providing a rationale for the implementation of dietary interventions as a therapeutic strategy for Alzheimer's disease.


Subject(s)
Alzheimer Disease/diet therapy , Diet, Ketogenic , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/metabolism , Animals , Diet, Ketogenic/methods , Humans , Neuroprotection , tau Proteins/analysis , tau Proteins/metabolism
20.
Pharmacology ; 101(1-2): 22-28, 2018.
Article in English | MEDLINE | ID: mdl-28926841

ABSTRACT

BACKGROUND/AIM: To isobolographically determine the types of interactions that occur between retigabine and lacosamide (LCM; two third-generation antiepileptic drugs) with respect to their anticonvulsant activity and acute adverse effects (sedation) in the maximal electroshock-induced seizures (MES) and chimney test (motor performance) in adult male Swiss mice. METHODS: Type I isobolographic analysis for nonparallel dose-response effects for the combination of retigabine with LCM (at the fixed-ratio of 1:1) in both the MES and chimney test in mice was performed. Brain concentrations of retigabine and LCM were measured by high-pressure liquid chromatography (HPLC) to characterize any pharmacokinetic interactions occurring when combining these drugs. RESULTS: Linear regression analysis revealed that retigabine had its dose-response effect line nonparallel to that of LCM in both the MES and chimney tests. The type I isobolographic analysis illustrated that retigabine combined with LCM (fixed-ratio of 1:1) exerted an additive interaction in the mouse MES model and sub-additivity (antagonism) in the chimney test. With HPLC, retigabine and LCM did not mutually change their total brain concentrations, thereby confirming the pharmacodynamic nature of the interaction. CONCLUSION: LCM combined with retigabine possesses a beneficial preclinical profile (benefit index ranged from 2.07 to 2.50) and this 2-drug combination is worth recommending as treatment plan to patients with pharmacoresistant epilepsy.


Subject(s)
Acetamides/therapeutic use , Anticonvulsants/therapeutic use , Carbamates/therapeutic use , Phenylenediamines/therapeutic use , Seizures/drug therapy , Acetamides/adverse effects , Acetamides/pharmacokinetics , Animals , Anticonvulsants/adverse effects , Anticonvulsants/pharmacokinetics , Brain/metabolism , Carbamates/adverse effects , Carbamates/pharmacokinetics , Dose-Response Relationship, Drug , Drug Combinations , Electroshock , Lacosamide , Male , Mice , Phenylenediamines/adverse effects , Phenylenediamines/pharmacokinetics , Psychomotor Performance/drug effects , Seizures/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL