Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Am J Respir Cell Mol Biol ; 68(3): 288-301, 2023 03.
Article in English | MEDLINE | ID: mdl-36252182

ABSTRACT

Hypoxia contributes to the exaggerated yet ineffective airway inflammation that fails to oppose infections in cystic fibrosis (CF). However, the potential for impairment of essential immune functions by HIF-1α (hypoxia-inducible factor 1α) inhibition demands a better comprehension of downstream hypoxia-dependent pathways that are amenable for manipulation. We assessed here whether hypoxia may interfere with the activity of AhR (aryl hydrocarbon receptor), a versatile environmental sensor highly expressed in the lungs, where it plays a homeostatic role. We used murine models of Aspergillus fumigatus infection in vivo and human cells in vitro to define the functional role of AhR in CF, evaluate the impact of hypoxia on AhR expression and activity, and assess whether AhR agonism may antagonize hypoxia-driven inflammation. We demonstrated that there is an important interferential cross-talk between the AhR and HIF-1α signaling pathways in murine and human CF, in that HIF-1α induction squelched the normal AhR response through an impaired formation of the AhR:ARNT (aryl hydrocarbon receptor nuclear translocator)/HIF-1ß heterodimer. However, functional studies and analysis of the AhR genetic variability in patients with CF proved that AhR agonism could prevent hypoxia-driven inflammation, restore immune homeostasis, and improve lung function. This study emphasizes the contribution of environmental factors, such as infections, in CF disease progression and suggests the exploitation of hypoxia:xenobiotic receptor cross-talk for antiinflammatory therapy in CF.


Subject(s)
Cystic Fibrosis , Receptors, Aryl Hydrocarbon , Humans , Mice , Animals , Receptors, Aryl Hydrocarbon/metabolism , Hypoxia/metabolism , Signal Transduction , Inflammation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
2.
Infect Immun ; 90(4): e0004822, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35311544

ABSTRACT

It is becoming increasingly clear that the communities of microorganisms that populate the surfaces exposed to the external environment, termed microbiota, are key players in the regulation of pathogen-host cross talk affecting the onset as well as the outcome of infectious diseases. We have performed a multicenter, prospective, observational study in which nasal and oropharyngeal swabs were collected for microbiota predicting the risk of invasive fungal infections (IFIs) in patients with hematological malignancies. Here, we demonstrate that the nasal and oropharyngeal microbiota are different, although similar characteristics differentiate high-risk from low-risk samples at both sites. Indeed, similar to previously published results on the oropharyngeal microbiota, high-risk samples in the nose were characterized by low diversity, a loss of beneficial bacteria, and an expansion of potentially pathogenic taxa, in the presence of reduced levels of tryptophan (Trp). At variance with oropharyngeal samples, however, low Trp levels were associated with defective host-derived kynurenine production, suggesting reduced tolerance mechanisms at the nasal mucosal surface. This was accompanied by reduced levels of the chemokine interleukin-8 (IL-8), likely associated with a reduced recruitment of neutrophils and impaired fungal clearance. Thus, the nasal and pharyngeal microbiomes of hematological patients provide complementary information that could improve predictive tools for the risk of IFI in hematological patients.


Subject(s)
Invasive Fungal Infections , Microbiota , Bacteria , Humans , Nose/microbiology , Prospective Studies
3.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445184

ABSTRACT

The microbiome, i.e., the communities of microbes that inhabit the surfaces exposed to the external environment, participates in the regulation of host physiology, including the immune response against pathogens. At the same time, the immune response shapes the microbiome to regulate its composition and function. How the crosstalk between the immune system and the microbiome regulates the response to fungal infection has remained relatively unexplored. We have previously shown that strict anaerobes protect from infection with the opportunistic fungus Aspergillus fumigatus by counteracting the expansion of pathogenic Proteobacteria. By resorting to immunodeficient mouse strains, we found that the lung microbiota could compensate for the lack of B and T lymphocytes in Rag1-/- mice by skewing the composition towards an increased abundance of protective anaerobes such as Clostridia and Bacteroidota. Conversely, NSG mice, with major defects in both the innate and adaptive immune response, showed an increased susceptibility to infection associated with a low abundance of strict anaerobes and the expansion of Proteobacteria. Further exploration in a murine model of chronic granulomatous disease, a primary form of immunodeficiency characterized by defective phagocyte NADPH oxidase, confirms the association of lung unbalance between anaerobes and Proteobacteria and the susceptibility to aspergillosis. Consistent changes in the lung levels of short-chain fatty acids between the different strains support the conclusion that the immune system and the microbiota are functionally intertwined during Aspergillus infection and determine the outcome of the infection.


Subject(s)
Aspergillosis/immunology , Aspergillus fumigatus/immunology , Lung/microbiology , Adaptive Immunity , Animals , Aspergillosis/microbiology , Aspergillus fumigatus/physiology , Fatty Acids, Volatile/immunology , Host-Pathogen Interactions , Immunity, Innate , Lung/immunology , Mice , Mice, Inbred C57BL , Microbiota
4.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207085

ABSTRACT

Inflammasomes are powerful cytosolic sensors of environmental stressors and are critical for triggering interleukin-1 (IL-1)-mediated inflammatory responses. However, dysregulation of inflammasome activation may lead to pathological conditions, and the identification of negative regulators for therapeutic purposes is increasingly being recognized. Anakinra, the recombinant form of the IL-1 receptor antagonist, proved effective by preventing the binding of IL-1 to its receptor, IL-1R1, thus restoring autophagy and dampening NLR family pyrin domain containing 3 (NLRP3) activity. As the generation of mitochondrial reactive oxidative species (ROS) is a critical upstream event in the activation of NLRP3, we investigated whether anakinra would regulate mitochondrial ROS production. By profiling the activation of transcription factors induced in murine alveolar macrophages, we found a mitochondrial antioxidative pathway induced by anakinra involving the manganese-dependent superoxide dismutase (MnSOD) or SOD2. Molecularly, anakinra promotes the binding of SOD2 with the deubiquitinase Ubiquitin Specific Peptidase 36 (USP36) and Constitutive photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2 protein longevity. Functionally, anakinra and SOD2 protects mice from pulmonary oxidative inflammation and infection. On a preclinical level, anakinra upregulates SOD2 in murine models of chronic granulomatous disease (CGD) and cystic fibrosis (CF). These data suggest that protection from mitochondrial oxidative stress may represent an additional mechanism underlying the clinical benefit of anakinra and identifies SOD2 as a potential therapeutic target.


Subject(s)
Inflammasomes/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Recombinant Proteins/pharmacology , Superoxide Dismutase/metabolism , Animals , Cells, Cultured , Cystic Fibrosis/etiology , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Disease Models, Animal , Granulomatous Disease, Chronic/etiology , Granulomatous Disease, Chronic/metabolism , Granulomatous Disease, Chronic/pathology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism
5.
Molecules ; 25(11)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517272

ABSTRACT

Neurodegenerative diseases are associated with increased levels of nitric oxide (NO) mainly produced by microglial cells through inducible nitric oxide synthase (iNOS) whose expression is induced by inflammatory stimuli. NO can both exert cytotoxic functions and induce a metabolic switch by inhibiting oxidative phosphorylation and upregulating glycolytic flux. Here, we investigated whether two newly synthesized acetamidine based iNOS inhibitors, namely CM292 and CM544, could inhibit lipopolysaccharide (LPS)-induced BV2 microglial cell activation, focusing on both inflammatory and metabolic profiles. We found that CM292 and CM544, without affecting iNOS protein expression, reduced NO production and reverted LPS-induced inflammatory and cytotoxic response. Furthermore, in the presence of the inflammatory stimulus, both the inhibitors increased the expression of glycolytic enzymes. In particular, CM292 significantly reduced nuclear accumulation of pyruvate kinase M2, increased mitochondrial membrane potential and oxygen consumption rate, and augmented the expression of pyruvate dehydrogenase, pointing to a metabolic switch toward oxidative phosphorylation. These data confirm the role played by NO in the connection between cell bioenergetics profile and inflammation, and suggest the potential usefulness of iNOS inhibitors in redirecting microglia from detrimental to pro-regenerative phenotype.


Subject(s)
Amidines/chemistry , Amidines/pharmacology , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Microglia/drug effects , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide/metabolism , Proline/analogs & derivatives , Animals , Cells, Cultured , Enzyme Inhibitors/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Mice , Microglia/metabolism , Microglia/pathology , Proline/pharmacology , Signal Transduction
6.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719750

ABSTRACT

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Subject(s)
Candida albicans , Celiac Disease , Homeostasis , Mast Cells , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/metabolism , Humans , Candida albicans/pathogenicity , Candida albicans/immunology , Mast Cells/immunology , Mast Cells/metabolism , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Candidiasis/immunology , Candidiasis/microbiology , Animals , Candida/pathogenicity , Candida/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
7.
Int Immunopharmacol ; 117: 109949, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36881979

ABSTRACT

The recent COVID-19 pandemic has catalyzed the attention of the scientific community to the long-standing issue of lower respiratory tract infections. The myriad of airborne bacterial, viral and fungal agents to which humans are constantly exposed represents a constant threat to susceptible individuals and bears the potential to reach a catastrophic scale when the ease of inter-individual transmission couples with a severe pathogenicity. While we might be past the threat of COVID-19, the risk of future outbreaks of respiratory infections is tangible and argues for a comprehensive assessment of the pathogenic mechanisms shared by airborne pathogens. On this regard, it is clear that the immune system play a major role in dictating the clinical course of the infection. A balanced immune response is required not only to disarm the pathogens, but also to prevent collateral tissue damage, thus moving at the interface between resistance to infection and tolerance. Thymosin alpha1 (Tα1), an endogenous thymic peptide, is increasingly being recognized for its ability to work as an immunoregulatory molecule able to balance a derailed immune response, working as immune stimulatory or immune suppressive in a context-dependent manner. In this review, we will take advantage from the recent work on the COVID-19 pandemic to reassess the role of Tα1 as a potential therapeutic molecule in lung infections caused by either defective or exaggerated immune responses. The elucidation of the immune regulatory mechanisms of Tα1 might open a new window of opportunity for the clinical translation of this enigmatic molecule and a potential new weapon in our arsenal against lung infections.


Subject(s)
COVID-19 , Thymosin , Humans , Thymalfasin/therapeutic use , Thymosin/therapeutic use , Pandemics , Lung
8.
PNAS Nexus ; 2(3): pgad036, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36896128

ABSTRACT

The environmental light/dark cycle has left its mark on the body's physiological functions to condition not only our inner biology, but also the interaction with external cues. In this scenario, the circadian regulation of the immune response has emerged as a critical factor in defining the host-pathogen interaction and the identification of the underlying circuitry represents a prerequisite for the development of circadian-based therapeutic strategies. The possibility to track down the circadian regulation of the immune response to a metabolic pathway would represent a unique opportunity in this direction. Herein, we show that the metabolism of the essential amino acid tryptophan, involved in the regulation of fundamental processes in mammals, is regulated in a circadian manner in both murine and human cells and in mouse tissues. By resorting to a murine model of pulmonary infection with the opportunistic fungus Aspergillus fumigatus, we showed that the circadian oscillation in the lung of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO)1, generating the immunoregulatory kynurenine, resulted in diurnal changes in the immune response and the outcome of fungal infection. In addition, the circadian regulation of IDO1 drives such diurnal changes in a pre-clinical model of cystic fibrosis (CF), an autosomal recessive disease characterized by progressive lung function decline and recurrent infections, thus acquiring considerable clinical relevance. Our results demonstrate that the circadian rhythm at the intersection between metabolism and immune response underlies the diurnal changes in host-fungal interaction, thus paving the way for a circadian-based antimicrobial therapy.

9.
Nat Commun ; 14(1): 5753, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37717018

ABSTRACT

The aromatic amino acid L-tryptophan (Trp) is essentially metabolized along the host and microbial pathways. While much is known about the role played by downstream metabolites of each pathways in intestinal homeostasis, their role in lung immune homeostasis is underappreciated. Here we have examined the role played by the Trp hydroxylase/5-hydroxytryptamine (5-HT) pathway in calibrating host and microbial Trp metabolism during Aspergillus fumigatus pneumonia. We found that 5-HT produced by mast cells essentially contributed to pathogen clearance and immune homeostasis in infection by promoting the host protective indoleamine-2,3-dioxygenase 1/kynurenine pathway and limiting the microbial activation of the indole/aryl hydrocarbon receptor pathway. This occurred via regulation of lung and intestinal microbiota and signaling pathways. 5-HT was deficient in the sputa of patients with Cystic fibrosis, while 5-HT supplementation restored the dysregulated Trp partitioning in murine disease. These findings suggest that 5-HT, by bridging host-microbiota Trp partitioning, may have clinical effects beyond its mood regulatory function in respiratory pathologies with an inflammatory component.


Subject(s)
Aspergillosis , Influenza, Human , Microbiota , Mycoses , Pneumonia , Humans , Animals , Mice , Tryptophan , Serotonin
10.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35236743

ABSTRACT

BACKGROUND: Despite the great success, the therapeutic benefits of immune checkpoint inhibitors (ICIs) in cancer immunotherapy are limited by either various resistance mechanisms or ICI-associated toxic effects including gastrointestinal toxicity. Thus, novel therapeutic strategies that provide manageable side effects to existing ICIs would enhance and expand their therapeutic efficacy and application. Due to its proven role in cancer development and immune regulation, gut microbiome has gained increasing expectation as a potential armamentarium to optimize immunotherapy with ICI. However, much has to be learned to fully harness gut microbiome for clinical applicability. Here we have assessed whether microbial metabolites working at the interface between microbes and the host immune system may optimize ICI therapy. METHODS: To this purpose, we have tested indole-3-carboxaldehyde (3-IAld), a microbial tryptophan catabolite known to contribute to epithelial barrier function and immune homeostasis in the gut via the aryl hydrocarbon receptor (AhR), in different murine models of ICI-induced colitis. Epithelial barrier integrity, inflammation and changes in gut microbiome composition and function were analyzed. AhR, indoleamine 2,3-dioxygenase 1, interleukin (IL)-10 and IL-22 knockout mice were used to investigate the mechanism of 3-IAld activity. The function of the microbiome changes induced by 3-IAld was evaluated on fecal microbiome transplantation (FMT). Finally, murine tumor models were used to assess the effect of 3-IAld treatment on the antitumor activity of ICI. RESULTS: On administration to mice with ICI-induced colitis, 3-IAld protected mice from intestinal damage via a dual action on both the host and the microbes. Indeed, paralleling the activation of the host AhR/IL-22-dependent pathway, 3-IAld also affected the composition and function of the microbiota such that FMT from 3-IAld-treated mice protected against ICI-induced colitis with the contribution of butyrate-producing bacteria. Importantly, while preventing intestinal damage, 3-IAld did not impair the antitumor activity of ICI. CONCLUSIONS: This study provides a proof-of-concept demonstration that moving past bacterial phylogeny and focusing on bacterial metabolome may lead to a new class of discrete molecules, and that working at the interface between microbes and the host immune system may optimize ICI therapy.


Subject(s)
Colitis , Neoplasms , Animals , Colitis/chemically induced , Colitis/drug therapy , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Neoplasms/drug therapy , Treatment Outcome , Tryptophan/pharmacology
11.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-34847078

ABSTRACT

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here, we define a molecular pathway through which recombinant IL-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activated NADPH oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1-dependent antiinflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease.


Subject(s)
Autophagy/drug effects , Interleukin 1 Receptor Antagonist Protein/pharmacology , Mitochondria/metabolism , Oxidative Stress/drug effects , Proteostasis/drug effects , Animals , Female , Male , Mice , Mice, Knockout , Oxidation-Reduction/drug effects
12.
Eur J Med Chem ; 209: 112921, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33071052

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding for the ion channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Long considered a lung disease for the devastating impact on the respiratory function, the recent diagnostic and therapeutic advances have shed the light on the extra-pulmonary manifestations of CF, including gastrointestinal, hepatobiliary and pancreatic symptoms. We have previously demonstrated that thymosin alpha1 (Tα1), a naturally occurring immunomodulatory peptide, displays multi-sided beneficial effects in CF that concur in ameliorating the lung inflammatory pathology. In the present study, by resorting to murine models of gut inflammation with clinical relevance for CF patients, we demonstrate that Tα1 can also have beneficial effects in extrapulmonary pathology. Specifically, Tα1 restored barrier integrity and immune homeostasis in the inflamed gut of CF mice as well as in mice with the metabolic syndrome, a disorder that may arise in CF patients with high caloric intake despite pancreatic sufficiency. The protective effects of Tα1 also extended to pancreas and liver, further emphasizing the beneficial effects of Tα1 in extra-pulmonary complications of CF. By performing wide-ranging multi-organ anti-inflammatory effects, Tα1 could potentially integrate current therapeutic approaches to tackle the complex symptomatology of CF disease.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Immunologic Factors/chemistry , Thymalfasin/chemistry , Animals , Candida albicans/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Female , Homeostasis/drug effects , Humans , Immunologic Factors/pharmacology , Kynurenine/metabolism , Liver , Lung , Mice , Mutation , Obesity/drug therapy , Pancreas , Signal Transduction , Thymalfasin/pharmacology
13.
Cells ; 10(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209524

ABSTRACT

Primary sclerosing cholangitis (PSC) is a long-term liver disease characterized by a progressive course of cholestasis with liver inflammation and fibrosis. Intestinal barrier dysfunction has been implicated in the pathogenesis of PSC. According to the "leaky gut" hypothesis, gut inflammation alters the permeability of the intestinal mucosa, with the translocation of gut-derived products that enter the enterohepatic circulation and cause hepatic inflammation. Thus, the administration of molecules that preserve epithelial barrier integrity would represent a promising therapeutic strategy. Indole-3-carboxaldehyde (3-IAld) is a microbial-derived product working at the interface between the host and the microbiota and is able to promote mucosal immune homeostasis in a variety of preclinical settings. Herein, by resorting to a murine model of PSC, we found that 3-IAld formulated for localized delivery in the gut alleviates hepatic inflammation and fibrosis by modulating the intestinal microbiota and activating the aryl hydrocarbon receptor-IL-22 axis to restore mucosal integrity. This study points to the therapeutic potential of 3-IAld in liver pathology.


Subject(s)
Cholangitis, Sclerosing/pathology , Indoles/pharmacology , Intestinal Mucosa/pathology , Liver Cirrhosis/pathology , Animals , Diet , Disease Models, Animal , Inflammation/complications , Inflammation/pathology , Interleukins/metabolism , Intestinal Mucosa/drug effects , Liver Cirrhosis/complications , Mice, Inbred C57BL , Microbiota/drug effects , Pyridines , Receptors, Aryl Hydrocarbon/metabolism , Interleukin-22
14.
Cells ; 10(7)2021 06 25.
Article in English | MEDLINE | ID: mdl-34202407

ABSTRACT

Inflammation plays a major role in the pathophysiology of cystic fibrosis (CF), a multisystem disease. Anti-inflammatory therapies are, therefore, of interest in CF, provided that the inhibition of inflammation does not compromise the ability to fight pathogens. Here, we assess whether indole-3-aldehyde (3-IAld), a ligand of the aryl hydrocarbon receptor (AhR), may encompass such an activity. We resorted to biopharmaceutical technologies in order to deliver 3-IAld directly into the lung, via dry powder inhalation, or into the gut, via enteric microparticles, in murine models of CF infection and inflammation. We found the site-specific delivery of 3-IAld to be an efficient strategy to restore immune and microbial homeostasis in CF organs, and mitigate lung and gut inflammatory pathology in response to fungal infections, in the relative absence of local and systemic inflammatory toxicity. Thus, enhanced delivery to target organs of AhR agonists, such as 3-IAld, may pave the way for the development of safe and effective anti-inflammatory agents in CF.


Subject(s)
Cystic Fibrosis/drug therapy , Cystic Fibrosis/pathology , Drug Delivery Systems , Indoles/therapeutic use , Administration, Inhalation , Aerosols/pharmacology , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Indoles/administration & dosage , Indoles/pharmacology , Ligands , Lung/drug effects , Lung/microbiology , Lung/pathology , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon/metabolism
15.
Life Sci Alliance ; 3(10)2020 10.
Article in English | MEDLINE | ID: mdl-32817121

ABSTRACT

The advent of immune checkpoint inhibitors has represented a major boost in cancer therapy, but safety concerns are increasingly being recognized. Indeed, although beneficial at the tumor site, unlocking a safeguard mechanism of the immune response may trigger autoimmune-like effects at the periphery, thus making the safety of immune checkpoint inhibitors a research priority. Herein, we demonstrate that thymosin α1 (Tα1), an endogenous peptide with immunomodulatory activities, can protect mice from intestinal toxicity in a murine model of immune checkpoint inhibitor-induced colitis. Specifically, Tα1 efficiently prevented immune adverse pathology in the gut by promoting the indoleamine 2,3-dioxygenase (IDO) 1-dependent tolerogenic immune pathway. Notably, Tα1 did not induce IDO1 in the tumor microenvironment, but rather modulated the infiltration of T-cell subsets by inverting the ratio between CD8+ and Treg cells, an effect that may depend on Tα1 ability to regulate the differentiation and chemokine expression profile of DCs. Thus, through distinct mechanisms that are contingent upon the context, Tα1 represents a plausible candidate to improve the safety/efficacy profile of immune checkpoint inhibitors.


Subject(s)
Intestinal Mucosa/drug effects , Thymalfasin/metabolism , Thymalfasin/pharmacology , Animals , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , Cell Differentiation/drug effects , Dendritic Cells/metabolism , Female , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Intestinal Mucosa/metabolism , Intestines/drug effects , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism , Thymalfasin/physiology , Thymosin/metabolism , Thymosin/physiology
16.
Eur J Med Chem ; 206: 112717, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32823008

ABSTRACT

Cystic fibrosis (CF) is a rare genetic disorder caused by a defect in the ion channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR), resulting in ionic imbalance of surface fluid. Although affecting multiple organs, the progressive deterioration of respiratory function by recurrent infections and chronic inflammation represents the main cause of morbidity and mortality in CF patients. The development of modulators targeting the basic defect of CFTR has represented a major breakthrough in CF therapy, but the impact on inflammation has remained enigmatic. The emerging scenario taking hold in the field points to inflammation as a major, somehow missed, therapeutic target for prevention of lung decline. Not surprisingly, the development of anti-inflammatory drugs is taking its share in the drug development pipeline. But the path is not straightforward and targeting inflammation should be balanced with the increased risk of infection. The strategy to restore the homeostatic regulation of inflammation to efficiently respond to infection while preventing lung damage needs to be based on identifying and targeting endogenous immunoregulatory pathways that are defective in CF. We herein provide an overview of anti-inflammatory drugs currently approved or under investigation in CF patients, and present our recent studies on how the knowledge on defective immune pathways in CF may translate into innovative and selective anti-inflammatory therapeutics. Through the discovery of naturally occurring molecules or their synthetic mimics, this review emphasizes the critical importance of selectively targeting key inflammatory pathways to preserve immunocompetence in CF patients.


Subject(s)
Cystic Fibrosis/drug therapy , Molecular Targeted Therapy/methods , Animals , Cystic Fibrosis/complications , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Drug Discovery , Humans , Inflammation/complications , Lung/drug effects , Lung/metabolism , Lung/pathology
SELECTION OF CITATIONS
SEARCH DETAIL