ABSTRACT
Late-onset Pompe Disease (LOPD) is a rare genetic disorder caused by the deficiency of acid alpha-glucosidase leading to progressive cellular dysfunction due to the accumulation of glycogen in the lysosome. The mechanism of relentless muscle damage - a classic manifestation of the disease - has been extensively studied by analysing the whole muscle tissue; however, little, if any, is known about transcriptional heterogeneity among nuclei within the multinucleated skeletal muscle cells. This is the first report of application of single nuclei RNA sequencing to uncover changes in the gene expression profile in muscle biopsies from eight patients with LOPD and four muscle samples from age and gender matched healthy controls. We matched these changes with histology findings using GeoMx Spatial Transcriptomics to compare the transcriptome of control myofibers from healthy individuals with non-vacuolated (histologically unaffected) and vacuolated (histologically affected) myofibers of LODP patients. We observed an increase in the proportion of slow and regenerative muscle fibers and macrophages in LOPD muscles. The expression of the genes involved in glycolysis was reduced, whereas the expression of the genes involved in the metabolism of lipids and amino acids was increased in non-vacuolated fibers, indicating early metabolic abnormalities. Additionally, we detected upregulation of autophagy genes, and downregulation of the genes involved in ribosomal and mitochondrial function leading to defective oxidative phosphorylation. The upregulation of the genes associated with inflammation, apoptosis and muscle regeneration was observed only in vacuolated fibers. Notably, enzyme replacement therapy - the only available therapy for the disease - showed a tendency to restore metabolism dysregulation, particularly within slow fibers. A combination of single nuclei RNA sequencing and spatial transcriptomics revealed the landscape of normal and the diseased muscle, and highlighted the early abnormalities associated with the disease progression. Thus, the application of these two new cutting-edge technologies provided insight into the molecular pathophysiology of muscle damage in LOPD and identified potential avenues for therapeutic intervention.
ABSTRACT
PURPOSE OF REVIEW: In the last 30âyears, there have many publications describing the pattern of muscle involvement of different neuromuscular diseases leading to an increase in the information available for diagnosis. A high degree of expertise is needed to remember all the patterns described. Some attempts to use artificial intelligence or analysing muscle MRIs have been developed. We review the main patterns of involvement in limb girdle muscular dystrophies (LGMDs) and summarize the strategies for using artificial intelligence tools in this field. RECENT FINDINGS: The most frequent LGMDs have a widely described pattern of muscle involvement; however, for those rarer diseases, there is still not too much information available. patients. Most of the articles still include only pelvic and lower limbs muscles, which provide an incomplete picture of the diseases. AI tools have efficiently demonstrated to predict diagnosis of a limited number of disease with high accuracy. SUMMARY: Muscle MRI continues being a useful tool supporting the diagnosis of patients with LGMD and other neuromuscular diseases. However, the huge variety of patterns described makes their use in clinics a complicated task. Artificial intelligence tools are helping in that regard and there are already some accessible machine learning algorithms that can be used by the global medical community.
Subject(s)
Magnetic Resonance Imaging , Muscular Dystrophies, Limb-Girdle , Humans , Muscular Dystrophies, Limb-Girdle/diagnostic imaging , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/pathology , Magnetic Resonance Imaging/methods , Artificial Intelligence , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathologyABSTRACT
BACKGROUND AND PURPOSE: The transition to adult services, and subsequent glucocorticoid management, is critical in adults with Duchenne muscular dystrophy. This study aims (1) to describe treatment, functional abilities, respiratory and cardiac status during transition to adulthood and adult stages; and (2) to explore the association between glucocorticoid treatment after loss of ambulation (LOA) and late-stage clinical outcomes. METHODS: This was a retrospective single-centre study on individuals with Duchenne muscular dystrophy (≥16 years old) between 1986 and 2022. Logistic regression, Cox proportional hazards models and survival analyses were conducted utilizing data from clinical records. RESULTS: In all, 112 individuals were included. Mean age was 23.4 ± 5.2 years and mean follow-up was 18.5 ± 5.5 years. At last assessment, 47.2% were on glucocorticoids; the mean dose of prednisone was 0.38 ± 0.13 mg/kg/day and of deflazacort 0.43 ± 0.16 mg/kg/day. At age 16 years, motor function limitations included using a manual wheelchair (89.7%), standing (87.9%), transferring from a wheelchair (86.2%) and turning in bed (53.4%); 77.5% had a peak cough flow <270 L/min, 53.3% a forced vital capacity percentage of predicted <50% and 40.3% a left ventricular ejection fraction <50%. Glucocorticoids after LOA reduced the risk and delayed the time to difficulties balancing in the wheelchair, loss of hand to mouth function, forced vital capacity percentage of predicted <30% and forced vital capacity <1 L and were associated with lower frequency of left ventricular ejection fraction <50%, without differences between prednisone and deflazacort. Glucocorticoid dose did not differ by functional, respiratory or cardiac status. CONCLUSION: Glucocorticoids after LOA preserve late-stage functional abilities, respiratory and cardiac function. It is suggested using functional abilities, respiratory and cardiac status at transition stages for adult services planning.
Subject(s)
Glucocorticoids , Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Male , Adult , Glucocorticoids/therapeutic use , Young Adult , Retrospective Studies , Adolescent , Female , Pregnenediones/therapeutic use , Prednisone/therapeutic use , Mobility Limitation , Cohort Studies , Heart/drug effects , Heart/physiopathologyABSTRACT
BACKGROUND AND PURPOSE: The Rasch-Built Pompe-Specific Activity (R-PAct) scale is a patient-reported outcome measure specifically designed to quantify the effects of Pompe disease on daily life activities, developed for use in Dutch- and English-speaking countries. This study aimed to validate the R-PAct for use in other countries. METHODS: Four other language versions (German, French, Italian, and Spanish) of the R-PAct were created and distributed among Pompe patients (≥16 years old) in Germany, France, Spain, Italy, and Switzerland and pooled with data of newly diagnosed patients from Australia, Belgium, Canada, the Netherlands, New Zealand, the USA, and the UK and the original validation cohort (n = 186). The psychometric properties of the scale were assessed by exploratory factor analysis and Rasch analysis. RESULTS: Data for 520 patients were eligible for analysis. Exploratory factor analysis suggested that the items separated into two domains: Activities of Daily Living and Mobility. Both domains independently displayed adequate Rasch model measurement properties, following the removal of one item ("Are you able to practice a sport?") from the Mobility domain, and can be added together to form a "higher order" factor as well. Differential item functioning (DIF)-by-language assessment indicated DIF for several items; however, the impact of accounting for DIF was negligible. We recalibrated the nomogram (raw score interval-level transformation) for the updated 17-item R-PAct scale. The minimal detectable change value was 13.85 for the overall R-PAct. CONCLUSIONS: After removing one item, the modified-R-PAct scale is a valid disease-specific patient-reported outcome measure for patients with Pompe disease across multiple countries.
ABSTRACT
BACKGROUND AND PURPOSE: Two novel enzyme replacement therapies (ERTs), studied in phase 3 trials in late-onset Pompe patients, reached marketing authorization by the European Medicines Agency in 2022 and 2023. The European Pompe Consortium (EPOC) updates and extends the scope of the 2017 recommendations for starting, switching and stopping ERT. METHODS: The European Pompe Consortium consists of 25 neuromuscular and metabolic experts from eight European countries. This update was performed after an in-person meeting, three rounds of discussion and voting to provide a consensus recommendation. RESULTS: The patient should be symptomatic, that is, should have skeletal muscle weakness or respiratory muscle involvement. Muscle magnetic resonance imaging findings showing substantial fat replacement can support the decision to start in a patient-by-patient scenario. Limited evidence supports switching ERT if there is no indication that skeletal muscle and/or respiratory function have stabilized or improved during standard ERT of 12 months or after severe infusion-associated reactions. Switching of ERT should be discussed on a patient-by-patient shared-decision basis. If there are severe, unmanageable infusion-associated reactions and no stabilization in skeletal muscle function during the first 2 years after starting or switching treatment, stopping ERT should be considered. After stopping ERT for inefficacy, restarting ERT can be considered. Six-monthly European Pompe Consortium muscle function assessments are recommended. CONCLUSIONS: The triple-S criteria on ERT start, switch and stop include muscle magnetic resonance imaging as a supportive finding and the potential option of home infusion therapy. Six-monthly long-term monitoring of muscle function is highly recommended to cover insights into the patient's trajectory under ERT.
Subject(s)
Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Glycogen Storage Disease Type II/drug therapy , Humans , Enzyme Replacement Therapy/methods , EuropeABSTRACT
BACKGROUND: The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. METHODS/DESIGN: The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). DISCUSSION: To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. TRIAL REGISTRATION: Clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.
Subject(s)
Muscular Dystrophies, Limb-Girdle , Sarcoglycanopathies , Humans , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Phenotype , Muscle, Skeletal , Mutation/genetics , Nerve Tissue Proteins/genetics , Molecular Chaperones/genetics , HSP40 Heat-Shock Proteins/genetics , Pentosyltransferases/genetics , Anoctamins/geneticsABSTRACT
Late-onset Pompe disease (LOPD) is a rare genetic disorder produced by mutations in the GAA gene and is characterized by progressive muscle weakness. LOPD muscle biopsies show accumulation of glycogen along with the autophagic vacuoles associated with atrophic muscle fibers. The expression of molecules related to muscle fiber atrophy in muscle biopsies of LOPD patients was studied using immunofluorescence and real-time PCR. BCL2 and adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a well-known atrogene, was identified as a potential mediator of muscle fiber atrophy in LOPD muscle biopsies. Vacuolated fibers in LOPD patient muscle biopsies were smaller than nonvacuolated fibers and expressed BNIP3. The current data suggested that BNIP3 expression is regulated by inhibition of the AKT-mammalian target of rapamycin pathway, leading to phosphorylation of Unc-51 like autophagy activating kinase 1 (ULK1) at Ser317 by AMP-activated protein kinase. Myoblasts and myotubes obtained from LOPD patients and age-matched controls were studied to confirm these results using different molecular techniques. Myotubes derived from LOPD patients were likewise smaller and expressed BNIP3. Conclusively, transfection of BNIP3 into control myotubes led to myotube atrophy. These findings suggest a cascade that starts with the inhibition of the AKT-mammalian target of rapamycin pathway and activation of BNIP3 expression, leading to progressive muscle fiber atrophy. These results open the door to potential new treatments targeting BNIP3 to reduce its deleterious effects on muscle fiber atrophy in Pompe disease.
Subject(s)
Glycogen Storage Disease Type II , Atrophy/pathology , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Humans , Membrane Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Proto-Oncogene Proteins , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases/metabolismABSTRACT
OBJECTIVE: Duchenne muscular dystrophy (DMD) exon 45-55 deletion (del45-55) has been postulated as a model that could treat up to 60% of DMD patients, but the associated clinical variability and complications require clarification. We aimed to understand the phenotypes and potential modifying factors of this dystrophinopathy subset. METHODS: This cross-sectional, multicenter cohort study applied clinical and functional evaluation. Next generation sequencing was employed to identify intronic breakpoints and their impact on the Dp140 promotor, intronic long noncoding RNA, and regulatory splicing sequences. DMD modifiers (SPP1, LTBP4, ACTN3) and concomitant mutations were also assessed. Haplotypes were built using DMD single nucleotide polymorphisms. Dystrophin expression was evaluated via immunostaining, Western blotting, reverse transcription polymerase chain reaction (PCR), and droplet digital PCR in 9 muscle biopsies. RESULTS: The series comprised 57 subjects (23 index) expressing Becker phenotype (28%), isolated cardiopathy (19%), and asymptomatic features (53%). Cognitive impairment occurred in 90% of children. Patients were classified according to 10 distinct index-case breakpoints; 4 of them were recurrent due to founder events. A specific breakpoint (D5) was associated with severity, but no significant effect was appreciated due to the changes in intronic sequences. All biopsies showed dystrophin expression of >67% and traces of alternative del45-57 transcript that were not deemed pathogenically relevant. Only the LTBP4 haplotype appeared associated the presence of cardiopathy among the explored extragenic factors. INTERPRETATION: We confirmed that del45-55 segregates a high proportion of benign phenotypes, severe cases, and isolated cardiac and cognitive presentations. Although some influence of the intronic breakpoint position and the LTBP4 modifier may exist, the pathomechanisms responsible for the phenotypic variability remain largely unresolved. ANN NEUROL 2022;92:793-806.
Subject(s)
Muscular Dystrophy, Duchenne , RNA, Long Noncoding , Humans , Dystrophin/genetics , Dystrophin/metabolism , Cohort Studies , Cross-Sectional Studies , Exons/genetics , Muscular Dystrophy, Duchenne/metabolism , Phenotype , Actinin/geneticsABSTRACT
Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.
Subject(s)
Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Sarcoglycanopathies , Adult , Child , Humans , Muscle Weakness , Muscular Dystrophies/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Retrospective Studies , Sarcoglycanopathies/genetics , Sarcoglycans/genetics , Sarcoglycans/metabolismABSTRACT
OBJECTIVE: Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD. METHODS: We collected a longitudinal series of functional assessments from 187 patients with dysferlinopathy over 3 years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and nonambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories. RESULTS: The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3 to 8 years post symptom onset at baseline. INTERPRETATION: The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinical practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy. ANN NEUROL 2021;89:967-978.
Subject(s)
Muscular Dystrophies, Limb-Girdle/diagnosis , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Child , Clinical Trials as Topic/methods , Cohort Studies , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Muscular Dystrophies, Limb-Girdle/physiopathology , Muscular Dystrophies, Limb-Girdle/psychology , Psychometrics , Treatment Outcome , Young AdultABSTRACT
Skeletal muscle contains multiple cell types that work together to maintain tissue homeostasis. Among these, satellite cells (SC) and fibroadipogenic progenitors cells (FAPs) are the two main stem cell pools. Studies of these cells using animal models have shown the importance of interactions between these cells in repair of healthy muscle, and degeneration of dystrophic muscle. Due to the unavailability of fresh patient muscle biopsies, similar analysis of interactions between human FAPs and SCs is limited especially among the muscular dystrophy patients. To address this issue here we describe a method that allows the use of frozen human skeletal muscle biopsies to simultaneously isolate and grow SCs and FAPs from healthy or dystrophic patients. We show that while the purified SCs differentiate into mature myotubes, purified FAPs can differentiate into adipocytes or fibroblasts demonstrating their multipotency. We find that these FAPs can be immortalized and the immortalized FAPs (iFAPs) retain their multipotency. These approaches open the door for carrying out personalized analysis of patient FAPs and interactions with the SCs that lead to muscle loss.
Subject(s)
Biopsy , Cell Separation , Cryopreservation , Muscle, Skeletal/cytology , Muscle, Skeletal/pathology , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/pathology , Adolescent , Adult , Aged , Cell Differentiation , Female , Healthy Volunteers , Humans , Male , Middle Aged , Multipotent Stem Cells/cytology , Multipotent Stem Cells/pathology , Muscular Dystrophy, Duchenne/pathology , Young AdultABSTRACT
INTRODUCTION/AIMS: Very few studies analyzing the pattern of muscle involvement in magnetic resonance imaging (MRI) of patients with McArdle disease have been reported to date. We aimed to examine the pattern of muscle fat replacement in patients with McArdle disease. METHODS: We performed a retrospective study including all patients with genetically confirmed McArdle disease followed in our center from January 2010 to March 2021. Clinical data were collected from the medical record. Whole-body MRI was performed as part of the diagnostic evaluation. The distribution of muscle fat replacement and its severity were analyzed. RESULTS: Nine patients were included. Median age at onset was 7 y (range, 5-58) and median age at the time when MRI was performed was 57.3 y (range, 37.2-72.8). At physical examination, four patients had permanent weakness: in three the weakness was limited to paraspinal muscles, whereas in one the weakness involved the paraspinal and proximal upper limb muscles. Muscle MRI showed abnormalities in six of the seven studied patients. In all of them, fat replacement of paravertebral muscles was found. Other muscles frequently affected were the tongue in three, subscapularis in three, and long head of biceps femoris and semimembranosus in two. DISCUSSION: Our findings suggest that paraspinal muscle involvement is common in McArdle disease and support the need to include this disease in the differential diagnosis of the causes of paraspinal muscle weakness. Involvement of the tongue and subscapularis are also frequent in McArdle disease.
Subject(s)
Glycogen Storage Disease Type V , Paraspinal Muscles , Adult , Glycogen Storage Disease Type V/diagnostic imaging , Glycogen Storage Disease Type V/pathology , Humans , Magnetic Resonance Imaging , Muscle Weakness/etiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Paraspinal Muscles/diagnostic imaging , Prevalence , Retrospective StudiesABSTRACT
INTRODUCTION/AIMS: Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive muscular dystrophy without approved therapies. In this study we evaluated whether locally acting ACE-083 could safely increase muscle volume and improve functional outcomes in adults with FSHD. METHODS: Participants were at least 18 years old and had FSHD1/FSHD2. Part 1 was open label, ascending dose, assessing safety and tolerability (primary objective). Part 2 was randomized, double-blind for 6 months, evaluating ACE-083240 mg/muscle vs placebo injected bilaterally every 3 weeks in the biceps brachii (BB) or tibialis anterior (TA) muscles, followed by 6 months of open label. Magnetic resonance imaging measures included total muscle volume (TMV; primary objective), fat fraction (FF), and contractile muscle volume (CMV). Functional measures included 6-minute walk test, 10-meter walk/run, and 4-stair climb (TA group), and performance of upper limb midlevel/elbow score (BB group). Strength, patient-reported outcomes (PROs), and safety were also evaluated. RESULTS: Parts 1 and 2 enrolled 37 and 58 participants, respectively. Among 55 participants evaluable in Part 2, the least-squares mean (90% confidence interval, analysis of covariance) treatment difference for TMV was 16.4% (9.8%-23.0%) in the BB group (P < .0001) and 9.5% (3.2%-15.9%) in the TA group (P = .01). CMV increased significantly in the BB and TA groups and FF decreased in the TA group. There were no consistent improvements in functional or PRO measures in either group. The most common adverse events were mild or moderate injection-site reactions. DISCUSSION: Significant increases in TMV with ACE-083 vs placebo did not result in consistent functional or PRO improvements with up to 12 months of treatment.
Subject(s)
Cytomegalovirus Infections , Muscular Dystrophy, Facioscapulohumeral , Adolescent , Adult , Cytomegalovirus Infections/pathology , Humans , Magnetic Resonance Imaging , Muscle Contraction , Muscle, SkeletalABSTRACT
INTRODUCTION/AIMS: There is debate about whether and to what extent either respiratory or cardiac dysfunction occurs in patients with dysferlinopathy. This study aimed to establish definitively whether dysfunction in either system is part of the dysferlinopathy phenotype. METHODS: As part of the Jain Foundation's International Clinical Outcome Study (COS) for dysferlinopathy, objective measures of respiratory and cardiac function were collected twice, with a 3-y interval between tests, in 188 genetically confirmed patients aged 11-86 y (53% female). Measures included forced vital capacity (FVC), electrocardiogram (ECG), and echocardiogram (echo). RESULTS: Mean FVC was 90% predicted at baseline, decreasing to 88% at year 3. FVC was less than 80% predicted in 44 patients (24%) at baseline and 48 patients (30%) by year 3, including ambulant participants. ECGs showed P-wave abnormalities indicative of delayed trans-atrial conduction in 58% of patients at baseline, representing a risk for developing atrial flutter or fibrillation. The prevalence of impaired left ventricular function or hypertrophy was comparable to that in the general population. DISCUSSION: These results demonstrate clinically significant respiratory impairment and abnormal atrial conduction in some patients with dysferlinopathy. Therefore, we recommend that annual or biannual follow-up should include FVC measurement, enquiry about arrhythmia symptoms and peripheral pulse palpation to assess cardiac rhythm. However, periodic specialist cardiac review is probably not warranted unless prompted by symptoms or abnormal pulse findings.
Subject(s)
Muscular Dystrophies, Limb-Girdle , Electrocardiography , Female , Humans , Longitudinal Studies , Male , Muscular Dystrophies, Limb-Girdle/genetics , PhenotypeABSTRACT
BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset myopathy characterized by ptosis, dysphagia, and progressive proximal limb muscle weakness. The disease is produced by a short expansion of the (GCN)n triplet in the PABPN1 gene. The size of expansion has been correlated to the disease onset and severity. We report the clinical features of a large cohort of OPMD patients harboring the (GCN)15 allele from the Canary Islands. METHODS: A retrospective observational study was performed analyzing the clinical, demographic, and genetic data of 123 OPMD patients. Clinical data from this cohort were compared with clinical data collected in a large European study including 139 OPMD patients. RESULTS: A total of 113 patients (94.2%) carried the (GCN)15 expanded PABN1 allele. Age of symptoms' onset was 45.1 years. The most frequent symptom at onset was ptosis (85.2%) followed by dysphagia (12%). The severity of the disease was milder in the Canary cohort compared to European patients as limb weakness (35.1% vs. 50.4%), the proportion of patients that require assistance for walking or use a wheelchair (9.3% vs. 27.4%), and needed of surgery because of severe dysphagia (4.6% vs. 22.8%) was higher in the European cohort. CONCLUSIONS: Nearly 95% of patients with OPMD from the Canary Islands harbored the (GCN)15 expanded allele supporting a potential founder effect. Disease progression seemed to be milder in the (GCN)15 OPMD Canary cohort than in other cohorts with shorter expansions suggesting that other factors, apart from the expansion size, could be involved in the progression of the disease.
Subject(s)
Deglutition Disorders , Muscular Dystrophy, Oculopharyngeal , Cohort Studies , Deglutition Disorders/genetics , Humans , Middle Aged , Muscle Weakness/etiology , Muscular Dystrophy, Oculopharyngeal/diagnosis , Muscular Dystrophy, Oculopharyngeal/genetics , Poly(A)-Binding Protein I/genetics , SpainABSTRACT
BACKGROUND: Only a few studies have reported muscle imaging data on small cohorts of patients with myotonic dystrophy type 1 (DM1). We aimed to investigate the muscle involvement in a large cohort of patients in order to refine the pattern of muscle involvement, to better understand the pathophysiological mechanisms of muscle weakness, and to identify potential imaging biomarkers for disease activity and severity. METHODS: One hundred and thirty-four DM1 patients underwent a cross-sectional muscle magnetic resonance imaging (MRI) study. Short tau inversion recovery (STIR) and T1 sequences in the lower and upper body were analyzed. Fat replacement, muscle atrophy and STIR positivity were evaluated using three different scales. Correlations between MRI scores, clinical features and genetic background were investigated. RESULTS: The most frequent pattern of muscle involvement in T1 consisted of fat replacement of the tongue, sternocleidomastoideus, paraspinalis, gluteus minimus, distal quadriceps and gastrocnemius medialis. Degree of fat replacement at MRI correlated with clinical severity and disease duration, but not with CTG expansion. Fat replacement was also detected in milder/asymptomatic patients. More than 80% of patients had STIR-positive signals in muscles. Most DM1 patients also showed a variable degree of muscle atrophy regardless of MRI signs of fat replacement. A subset of patients (20%) showed a 'marbled' muscle appearance. CONCLUSIONS: Muscle MRI is a sensitive biomarker of disease severity alsofor the milder spectrum of disease. STIR hyperintensity seems to precede fat replacement in T1. Beyond fat replacement, STIR positivity, muscle atrophy and a 'marbled' appearance suggest further mechanisms of muscle wasting and weakness in DM1, representing additional outcome measures and therapeutic targets for forthcoming clinical trials.
Subject(s)
Myotonic Dystrophy , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging/methods , Muscle Weakness , Muscle, Skeletal/pathology , Myotonic Dystrophy/diagnostic imagingABSTRACT
Previous studies have described the clinical, serological and pathological features of patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and antibodies directed against the paranodal proteins neurofascin-155, contactin-1 (CNTN1), contactin-associated protein-1 (Caspr1), or nodal forms of neurofascin. Such antibodies are useful for diagnosis and potentially treatment selection. However, antibodies targeting Caspr1 only or the Caspr1/CNTN1 complex have been reported in few patients with CIDP. Moreover, it is unclear if these patients belong to the same pathophysiological subgroup. Using cell-based assays in routine clinical testing, we identified sera from patients with CIDP showing strong membrane reactivity when both CNTN1 and Caspr1 were co-transfected (but not when CNTN1 was transfected alone). Fifteen patients (10 male; aged between 40 and 75) with antibodies targeting Caspr1/CNTN1 co-transfected cells were enrolled for characterization. The prevalence of anti-Caspr1/CNTN1 antibodies was 1.9% (1/52) in the Sant Pau CIDP cohort, and 4.3% (1/23) in a German cohort of acute-onset CIDP. All patients fulfilled European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) definite diagnostic criteria for CIDP. Seven (47%) were initially diagnosed with Guillain-Barré syndrome due to an acute-subacute onset. Six (40%) patients had cranial nerve involvement, eight (53%) reported neuropathic pain and 12 (80%) ataxia. Axonal involvement and acute denervation were frequent in electrophysiological studies. Complete response to intravenous immunoglobulin was not observed, while most (90%) responded well to rituximab. Enzyme-linked immunosorbent assay (ELISA) and teased nerve fibre immunohistochemistry confirmed reactivity against the paranodal Caspr1/CNTN1 complex. Weaker reactivity against Caspr1 transfected alone was also detected in 10/15 (67%). Sera from 13 of these patients were available for testing by ELISA. All 13 samples reacted against Caspr1 by ELISA and this reactivity was enhanced when CNTN1 was added to the Caspr1 ELISA. IgG subclasses were also investigated by ELISA. IgG4 was the predominant subclass in 10 patients, while IgG3 was predominant in other three patients. In conclusion, patients with antibodies to the Caspr1/CNTN1 complex display similar serological and clinical features and constitute a single subgroup within the CIDP syndrome. These antibodies likely target Caspr1 primarily and are detected with Caspr1-only ELISA, but reactivity is optimal when CNTN1 is added to Caspr1 in cell-based assays and ELISA.
Subject(s)
Autoantibodies/immunology , Autoantigens/immunology , Cell Adhesion Molecules, Neuronal/immunology , Contactin 1/immunology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology , Adult , Aged , Female , Humans , Male , Middle AgedABSTRACT
BACKGROUND: Guillain-Barré syndrome (GBS) is an acute inflammatory neuropathy with a heterogeneous presentation. Although some evidences support the role of autoantibodies in its pathogenesis, the target antigens remain unknown in a substantial proportion of GBS patients. The objective of this study is to screen for autoantibodies targeting peripheral nerve components in Guillain-Barré syndrome. METHODS: Autoantibody screening was performed in serum samples from all GBS patients included in the International GBS Outcome study by 11 different Spanish centres. The screening included testing for anti-ganglioside antibodies, anti-nodo/paranodal antibodies, immunocytochemistry on neuroblastoma-derived human motor neurons and murine dorsal root ganglia (DRG) neurons, and immunohistochemistry on monkey peripheral nerve sections. We analysed the staining patterns of patients and controls. The prognostic value of anti-ganglioside antibodies was also analysed. RESULTS: None of the GBS patients (n = 100) reacted against the nodo/paranodal proteins tested, and 61 (61%) were positive for, at least, one anti-ganglioside antibody. GBS sera reacted strongly against DRG neurons more frequently than controls both with IgG (6% vs 0%; p = 0.03) and IgM (11% vs 2.2%; p = 0.02) immunodetection. No differences were observed in the proportion of patients reacting against neuroblastoma-derived human motor neurons. Reactivity against monkey nerve tissue was frequently detected both in patients and controls, but specific patterns were only detected in GBS patients: IgG from 13 (13%) patients reacted strongly against Schwann cells. Finally, we confirmed that IgG anti-GM1 antibodies are associated with poorer outcomes independently of other known prognostic factors. CONCLUSION: Our study confirms that (1) GBS patients display a heterogeneous repertoire of autoantibodies targeting nerve cells and structures; (2) gangliosides are the most frequent antigens in GBS patients and have a prognostic value; (3) further antigen-discovery experiments may elucidate other potential antigens in GBS.
Subject(s)
Autoantibodies/blood , Guillain-Barre Syndrome/blood , Guillain-Barre Syndrome/diagnosis , Aged , Animals , Cell Line, Tumor , Cohort Studies , Female , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Guillain-Barre Syndrome/epidemiology , Humans , Macaca , Male , Mass Screening/methods , Middle Aged , Prospective Studies , Rats , Spain/epidemiologyABSTRACT
BACKGROUND: Cushing's syndrome (CS) is associated with skeletal muscle structural and functional impairment which may persist long-term despite surgical removal of the source of cortisol excess. Prevalence of sarcopenia and its impact on Health-Related-Quality of Life (HRQoL) in 'cured' CS is not known. There is a need to identify easy biomarkers to help the clinicians recognise patients at elevated risk of suffering sustained muscle function. PATIENTS AND METHODS: We studied 36 women with CS in remission, and 36 controls matched for age, body mass index, menopausal status, and level of physical activity. We analysed the skeletal muscle mass using dual-energy X-ray absorptiometry, muscle fat fraction using two-point Dixon magnetic resonance imaging and muscle performance and strength using the following tests: hand grip strength, gait speed, timed up and go and 30-s chair stand. We assessed HRQoL with the following questionnaires: SarQoL, CushingQoL, SF-36. We calculated the sarcopenia index (SI; serum creatinine/serum cystatin C × 100). RESULTS: Prevalence of sarcopenia, according to the European Working Group on Sarcopenia in Older People (EWGSOP), was greater in CS as compared with controls (19% vs. 3%; p < .05). Patients with sarcopenia had a lower SarQoL score than those without sarcopenia (61 ± 17 vs. 75 ± 14; p < .05), and scored worse on the items pain, easy bruising and worries on physical appearance (p < .05 for all comparisons) of the CushingQoL questionnaire. Patients with sarcopenia had poorer physical functioning on SF-36 than those without sarcopenia (60 ± 23 vs. 85 ± 15; p < .01). SI was lower in patients with sarcopenia than those without (71 ± 3 vs. 77 ± 2; p = .032), and was associated with intramuscular fatty infiltration, worse performance on the 30-s chair stand test, slower gait speed, and worse muscle weakness-related HRQoL, as measured using the SarQoL questionnaire (p < .05). The optimised cut-off value for the SI ratio to diagnose sarcopenia was 72, which yielded a sensitivity of 73% and a specificity of 90%. CONCLUSIONS: Sarcopenia is common in patients with CS in long-term remission, and associated with impaired quality of life. The SI is a potential biomarker allowing clinicians to identify patients at high risk of muscle dysfunction.
Subject(s)
Cushing Syndrome , Sarcopenia , Aged , Cushing Syndrome/pathology , Female , Hand Strength , Humans , Muscle, Skeletal/pathology , Prevalence , Quality of Life , Sarcopenia/epidemiologyABSTRACT
Pompe disease is characterized by a deficiency of acid alpha-glucosidase that results in muscle weakness and a variable degree of disability. There is an approved therapy based on enzymatic replacement that has modified disease progression. Several reports describing muscle magnetic resonance imaging (MRI) features of Pompe patients have been published. Most of the studies have focused on late-onset Pompe disease (LOPD) and identified a characteristic pattern of muscle involvement useful for the diagnosis. In addition, quantitative MRI studies have shown a progressive increase in fat in skeletal muscles of LOPD over time and they are increasingly considered a good tool to monitor progression of the disease. The studies performed in infantile-onset Pompe disease patients have shown less consistent changes. Other more sophisticated muscle MRI sequences, such as diffusion tensor imaging or glycogen spectroscopy, have also been used in Pompe patients and have shown promising results.