Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Anal Biochem ; 687: 115445, 2024 04.
Article in English | MEDLINE | ID: mdl-38135241

ABSTRACT

REAP+ is an enhanced version of the rapid, efficient, and practical (REAP) method designed for the isolation of nuclear fractions. This improved version, REAP+, enables fast and effective extraction of mitochondria, cytoplasm, and nuclei. The mechanical cell disruption process has been optimized to cerebral tissues, snap-frozen liver, and HT22 cells with remarkable fraction enrichment. REAP+ is well-suited for samples containing minimal protein quantities, such as mouse hippocampal slices. The method was validated by Western blot and marker enzyme activities, such as LDH and G6PDH for the cytoplasmic fraction and succinate dehydrogenase and cytochrome c oxidase for the mitochondrial fraction. One of the outstanding features of this method is its rapid execution, yielding fractions within 15 min, allowing for simultaneous preparation of multiple samples. In essence, REAP+ emerges as a swift, efficient, and practical technique for the concurrent isolation of nuclei, cytoplasm, and mitochondria from various cell types and tissues. The method would be suitable to study the multicompartment translocation of proteins, such as metabolic enzymes and transcription factors migrating from cytosol to the mitochondria and nuclei. Moreover, its compatibility with small samples, such as hippocampal slices, and its potential applicability to human biopsies, highlights the potential application in medical research.


Subject(s)
Cell Nucleus , Mitochondria , Humans , Mice , Animals , Cell Fractionation/methods , Mitochondria/metabolism , Cytoplasm/metabolism , Cell Nucleus/metabolism , Cytosol/metabolism , Subcellular Fractions/metabolism
2.
J Toxicol Environ Health A ; 87(4): 166-184, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38073470

ABSTRACT

Copper (Cu) is a naturally occurring metal with essential micronutrient properties. However, this metal might also pose increased adverse environmental and health risks due to industrial and agricultural activities. In Brazil, the maximum allowable concentration of Cu in drinking water is 2 mg/L. Despite this standard, the impact of such concentrations on aquatic organisms remains unexplored. This study aimed to evaluate the toxicity of CuSO4 using larval zebrafish at environmentally relevant concentrations. Zebrafish (Danio rerio) larvae at 72 hr post-fertilization (hpf) were exposed to nominal CuSO4 concentrations ranging from 0.16 to 48 mg/L to determine the median lethal concentration (LC50), established at 8.4 mg/L. Subsequently, non-lethal concentrations of 0.16, 0.32, or 1.6 mg/L were selected for assessing CuSO4 -induced toxicity. Morphological parameters, including body length, yolk sac area, and swim bladder area, were adversely affected by CuSO4 exposure, particularly at 1.6 mg/L (3.31 mm ±0.1, 0.192 mm2 ±0.01, and 0.01 mm2 ±0.05, respectively). In contrast, the control group exhibited values of 3.62 mm ±0.09, 0.136 mm2 ±0.013, and 0.3 mm2 ±0.06, respectively. Behavioral assays demonstrated impairments in escape response and swimming capacity, accompanied by increased levels of reactive oxygen species (ROS) and lipid peroxidation. In addition, decreased levels of non-protein thiols and reduced cellular viability were noted. Data demonstrated that exposure to CuSO4 at similar concentrations as those permitted in Brazil for Cu adversely altered morphological, biochemical, and behavioral endpoints in zebrafish larvae. This study suggests that the permissible Cu concentrations in Brazil need to be reevaluated, given the potential enhanced adverse health risks of exposure to environmental metal contamination.


Subject(s)
Copper , Water Pollutants, Chemical , Animals , Copper/toxicity , Zebrafish/physiology , Larva , Brazil , Lethal Dose 50 , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian
3.
J Toxicol Environ Health A ; : 1-20, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292449

ABSTRACT

The widely used insecticide chlorpyrifos (CP) is known to inhibit acetylcholinesterase (AChE) activity attributed to result in various neurological disorders and acetylcholine-dependent organ functions including heart, skeletal muscle, lung, gastrointestinal tract, and central nervous systems. Enzyme reactivators, such as oximes, are known to restore AChE activity and mitigate adverse effects. The identification of compounds that reactivate AChE constitute agents with important therapeutic beneficial effects in cases of pesticide poisoning. However, the screening of novel drugs using traditional models may raise ethical concerns. This study aimed to investigate the potential of Drosophila melanogaster as a model organism for screening AChE reactivators, with a focus on organophosphate poisoning. The efficacy of several oximes, including pralidoxime, trimedoxime, obidoxime, methoxime, HI-6, K027, and K048, against CP-induced AChE activity inhibition in D. melanogaster was determined in silico, in vitro, and in vivo experiments. Molecular docking studies indicated a strong interaction between studied oximes and the active-site gorge of AChE. Data showed that selected oximes (100 µM) are effective in the reactivation of AChE inhibited by CP (10 µM) in vitro. Finally, in vivo investigations demonstrated that selected oximes, pralidoxime and K048 (1.5 ppm), reversed the locomotor deficits, inhibition of AChE activity as well as lowered the mortality rates induced by CP (0.75 ppm). Our findings contribute to utilization of D. melanogaster as a robust model for determination of actions of identified new AChE inhibitory agents with more effective therapeutic properties that those currently in use in the clinical practice in treatment of AChE associated disorders.

4.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628801

ABSTRACT

Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by motor, psychiatric, cognitive, and peripheral symptoms without effective therapy. Evidence suggests that lifestyle factors can modulate disease onset and progression, and environmental enrichment (EE) has emerged as a potential approach to mitigate the progression and severity of neurodegenerative processes. Wild-type (WT) and yeast artificial chromosome (YAC) 128 mice were exposed to different EE conditions. Animals from cohort 1 were exposed to EE between postnatal days 21 and 60, and animals from cohort 2 were exposed to EE between postnatal days 60 and 120. Motor and non-motor behavioral tests were employed to evaluate the effects of EE on HD progression. Monoamine levels, hippocampal cell proliferation, neuronal differentiation, and dendritic arborization were also assessed. Here we show that EE had an antidepressant-like effect and slowed the progression of motor deficits in HD mice. It also reduced monoamine levels, which correlated with better motor performance, particularly in the striatum. EE also modulated neuronal differentiation in the YAC128 hippocampus. These results confirm that EE can impact behavior, hippocampal neuroplasticity, and monoamine levels in YAC128 mice, suggesting this could be a therapeutic strategy to modulate neuroplasticity deficits in HD. However, further research is needed to fully understand EE's mechanisms and long-term effects as an adjuvant therapy for this debilitating condition.


Subject(s)
Heredodegenerative Disorders, Nervous System , Huntington Disease , Animals , Mice , Huntington Disease/genetics , Huntington Disease/therapy , Amines , Cell Proliferation , Combined Modality Therapy
5.
Metab Brain Dis ; 37(5): 1597-1608, 2022 06.
Article in English | MEDLINE | ID: mdl-35435610

ABSTRACT

Cholecalciferol deficiency has been associated with stress-related psychiatric disorders, particularly depression. Therefore, the present study investigated the antidepressant-like effect of cholecalciferol in female mice and the possible role of the serotonergic system in this response. The ability of cholecalciferol to elicit an antidepressant-like effect and to modulate serotonin levels in the hippocampus and prefrontal cortex of mice subjected to chronic unpredictable stress (CUS) was also investigated. The administration of cholecalciferol (2.5, 7.5, and 25 µg/kg, p.o.) for 7 days, similar to fluoxetine (10 mg/kg, p.o., serotonin reuptake inhibitor), reduced the immobility time in the tail suspension test, without altering the locomotor performance in the open-field test. Moreover, the administration of p-chlorophenylalanine methyl ester (PCPA - 100 mg/kg, i.p., for 4 days, a selective inhibitor of tryptophan hydroxylase, involved in the serotonin synthesis) abolished the antidepressant-like effect of cholecalciferol and fluoxetine in the tail suspension test, demonstrating the involvement of serotonergic system. Additionally, CUS protocol (21 days) induced depressive-like behavior in the tail suspension test and decreased serotonin levels in the prefrontal cortex and hippocampus of mice. Conversely, the administration of cholecalciferol and fluoxetine in the last 7 days of CUS protocol completely abolished the stress-induced depressive-like phenotype. Cholecalciferol was also effective to abrogate CUS-induced reduction on serotonin levels in the prefrontal cortex, but not in the hippocampus. Our results indicate that cholecalciferol has an antidepressant-like effect in mice by modulating the serotonergic system and support the assumption that cholecalciferol may have beneficial effects for the management of depression.


Subject(s)
Fluoxetine , Serotonin , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Depression/drug therapy , Female , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Hindlimb Suspension/psychology , Humans , Mice , Synaptic Transmission
6.
Fish Physiol Biochem ; 48(1): 85-99, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34981327

ABSTRACT

We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia (Oreochromis niloticus). Two supplementation levels were tested: 1.0 g 100 g-1 (D1) and 4.0 g 100 g-1 (D4). A control diet, without the additive (D0, 0 g 100 g-1), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g-1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.


Subject(s)
Cichlids , Oxidative Stress , Temperature , Animal Feed/analysis , Animals , Antioxidants/metabolism , Cichlids/metabolism , Diet/veterinary , Dietary Supplements/analysis , Docosahexaenoic Acids/administration & dosage , Stramenopiles/chemistry
7.
Article in English | MEDLINE | ID: mdl-34284103

ABSTRACT

The effect of increasing amounts (0%, 25%, 50%, 75%, and 100%) of dietary supplementation with an organic micromineral complex (Fe, Zn, Cu, Mn, and Se) on antioxidant defenses and mineral deposition in tissues of Nile tilapia juveniles was evaluated, where 100% supplementation represented the average adopted by the feed industry in Brazil. Fish (initial weight 23.93 ± 0.80 g) were fed until apparent satiation twice a day for 56 days. The maximum deposition of Fe and Zn in the hepatopancreas occurred in fish given approximately 50% supplementation, whereas the deposition of Mn and Se increased linearly with the inclusion of the complex. The activity of catalase and superoxide dismutase in the hepatopancreas decreased in fish fed the 50% dose, when compared to those not receiving mineral supplementation or those receiving higher doses. Glutathione peroxidase (GPx) activity in the hepatopancreas increased as the dietary Se concentration increased. However, the concentration of metallothionein in the hepatopancreas showed an inverse relationship to the increase in dietary supplementation of the organic mineral complex. There was no relationship between the doses of organic micromineral supplementation and the activities of GPx, reduced glutathione, non-protein thiols, or protein carbonylation. However, diets supplemented with 50% to 100% promoted greater GPx activity when compared to the 0% supplemented diet. Supplementation with intermediate doses of organic microminerals, approximately 50% of that used in commercial tilapia diets, promoted the homeostasis of metal metabolism, especially for Fe and Zn.


Subject(s)
Animal Feed , Antioxidants/metabolism , Cichlids/physiology , Dietary Supplements , Metallothionein/metabolism , Animals , Antioxidants/chemistry , Brazil , Catalase/metabolism , Cichlids/metabolism , Diet , Glutathione , Glutathione Peroxidase/metabolism , Hepatopancreas/metabolism , Iron/chemistry , Male , Metallothionein/chemistry , Minerals/metabolism , Sulfhydryl Compounds/metabolism , Superoxide Dismutase/metabolism , Zinc/chemistry
8.
Neurochem Res ; 45(2): 354-370, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31786717

ABSTRACT

Methylglyoxal (MGO) is a highly reactive dicarbonyl molecule that promotes the formation of advanced glycation end products (AGEs), which are believed to play a key role in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, Swiss mice were treated with MGO by intraperitoneal injection to investigate its effects on motor activity, mood, and cognition. Acute MGO treatment heavily decreased locomotor activity in the open field test at higher doses (80-200 mg/kg), an effect not observed at lower doses (10-50 mg/kg). Several alterations were observed 4 h after a single MGO injection (10-50 mg/kg): (a) plasma MGO levels were increased, (b) memory was impaired (object location task), (c) anxiolytic behavior was observed in the open field and marble burying test, and (d) depressive-like behavior was evidenced as evaluated by the tail suspension test. Biochemical alterations in the glutathione and glyoxalase systems were not observed 4 h after MGO treatment. Mice were also treated daily with MGO at 0, 10, 25 and 50 mg/kg for 11 days. From the 5th to the 11th day, several behavioral end points were evaluated, resulting in: (a) absence of motor impairment as evaluated in the open field, horizontal bars and pole test, (b) depressive-like behavior observed in the tail suspension test, and (c) cognitive impairments detected on working, short- and long-term memory when mice were tested in the Y-maze spontaneous alternation, object location and recognition tests, and step-down inhibitory avoidance task. An interesting finding was a marked decrease in dopamine levels in the prefrontal cortex of mice treated with 50 mg/kg MGO for 11 days, along with a ~ 25% decrease in the Glo1 content. The MGO-induced dopamine depletion in the prefrontal cortex may be related to the observed memory deficits and depressive-like behavior, an interesting topic to be further studied as a potentially novel route for MGO toxicity.


Subject(s)
Anti-Anxiety Agents/toxicity , Depression/chemically induced , Dopamine/metabolism , Memory Disorders/chemically induced , Prefrontal Cortex/drug effects , Pyruvaldehyde/toxicity , Animals , Depression/metabolism , Female , Lactoylglutathione Lyase/metabolism , Locomotion/drug effects , Memory/drug effects , Memory Disorders/metabolism , Mice , Prefrontal Cortex/metabolism
9.
Neurochem Res ; 45(12): 2868-2883, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32968860

ABSTRACT

Recent evidence suggests that young rodents submitted to high fructose (FRU) diet develop metabolic, and cognitive dysfunctions. However, it remains unclear whether these detrimental effects of FRU intake can also be observed in middle-aged mice. Nine months-old C57BL/6 female mice were fed with water (Control) or 10% FRU in drinking water during 12 weeks. After that, metabolic, and neurochemical alterations were evaluated, focusing on neurotransmitters, and antioxidant defenses. Behavioral parameters related to motor activity, memory, anxiety, and depression were also evaluated. Mice consuming FRU diet displayed increased water, and caloric intake, resulting in weight gain, which was partially compensated due to decreased food pellet intake. FRU fed animals displayed increased plasma glucose, and cholesterol levels, which was not observed in overnight-fasted animals. Superoxide dismutase (SOD), and catalase (CAT) activities were markedly decreased in the prefrontal cortex of animals receiving FRU diet, while glutathione peroxidase (GPx) slightly increased. Liver (lower GPx), striatum (higher SOD and lower CAT), and hippocampus (no changes) were less impacted. No changes were observed in glutathione reductase, and thioredoxin reductase activities, two ancillary enzymes for peroxide detoxification. FRU intake did not alter serotonin, dopamine, and norepinephrine levels in the hippocampus, prefrontal cortex, and striatum. No significant alterations were observed in working, and short-term spatial memory; and in anxiety- and depressive-like behaviors in animals treated with FRU. Increased locomotor activity was observed in FRU-fed middle-aged mice, as evaluated in the open field, elevated plus-maze, Y maze, and object location tasks. Overall, these results demonstrate that high FRU consumption can disturb antioxidant defenses, and increase locomotor activity in middle-aged mice, open the opportunity for further studies to address the underlying mechanisms related to these findings.


Subject(s)
Catalase/metabolism , Fructose/pharmacology , Locomotion/drug effects , Superoxide Dismutase/metabolism , Animals , Brain/drug effects , Brain/metabolism , Elevated Plus Maze Test , Female , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Open Field Test/drug effects
10.
Ecotoxicol Environ Saf ; 182: 109411, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31299475

ABSTRACT

The urban growth has increased sanitary sewage discharges in coastal ecosystems, negatively affecting the aquatic biota. Mangroves, one of the most human-affected coastal biomes, are areas for reproduction and nursing of several species. In order to evaluate the effects of sanitary sewage effluents in mangrove species, this study assessed the hepatic transcriptional responses of guppy fish Poecilia vivipara exposed to sanitary sewage 33% (v:v), using suppressive subtraction hybridization (SSH), high throughput sequencing of RNA (Ion-proton) and quantification of transcript levels by qPCR of some identified genes in fish kept in a sewage-contaminated environment. Genes identified are related predominantly to xenobiotic biotransformation, immune system and sexual differentiation. The qPCR results confirmed the induction of cytochrome P450 1A (CYP1A), glutathione S transferase A-like (GST A-like) methyltransferase (MET) and UDP glycosyltransferase 1A (UDPGT1A), and repression of complement component C3 (C3), doublesex and mab-3 related transcription factor 1 (DMRT1), and transferrin (TF) in the laboratory experiment. In the field exposure, the transcript levels of CYP1A, DMRT1, MET, GST A-like and UDPGT1A were higher in fishes exposed at the contaminated sites compared to the reference site. Chemical analysis in fish from the laboratory and in situ experiments, and surface sediment from the sewage-contaminated sites revealed relevant levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and linear alkylbenzenes (LABs). These data reinforce the use of P. vivipara as a sentinel for monitoring environmental contamination in coastal regions.


Subject(s)
Environmental Monitoring/methods , Liver/drug effects , Poecilia/genetics , Sewage/chemistry , Transcription, Genetic/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biotransformation , Estuaries , Liver/metabolism , Models, Theoretical , Poecilia/metabolism , Water Pollutants, Chemical/metabolism , Xenobiotics/metabolism
11.
Neurochem Res ; 43(3): 745-759, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29362970

ABSTRACT

Systemic inflammation triggered by lipopolysaccharide (LPS) administration disrupts blood-brain barrier (BBB) homeostasis in animal models. This event leads to increased susceptibility of several encephalic structures to potential neurotoxicants present in the bloodstream. In this study, we investigated the effects of alternate intraperitoneal injections of LPS on BBB permeability, social recognition memory and biochemical parameters in the striatum 24 h and 60 days after treatments. In addition, we investigated whether the exposure to a moderate neurotoxic dose of the herbicide paraquat could potentiate LPS-induced neurotoxicity. LPS administration caused a transient disruption of BBB integrity, evidenced by increased levels of exogenously administered sodium fluorescein in the striatum. Also, LPS exposure caused delayed impairment in social recognition memory (evaluated at day 38 after treatments) and increase in the striatal levels of 3-nitrotyrosine. These events were observed in the absence of significant changes in motor coordination and in the levels of tyrosine hydroxylase (TH) in the striatum and substantia nigra. PQ exposure, which caused a long-lasting decrease of striatal mitochondrial complex I activity, did not modify LPS-induced behavioral and striatal biochemical changes. The results indicate that systemic administration of LPS causes delayed social recognition memory deficit and striatal nitrosative stress in adult mice and that the coexposure to a moderately toxic dose of PQ did not magnify these events. In addition, PQ-induced inhibition of striatal mitochondrial complex I was also not magnified by LPS exposure, indicating the absence of synergic neurotoxic effects of LPS and PQ in this experimental model.


Subject(s)
Behavior, Animal/drug effects , Corpus Striatum/drug effects , Lipopolysaccharides/pharmacology , Nitrosative Stress/drug effects , Paraquat/toxicity , Animals , Corpus Striatum/metabolism , Male , Memory/drug effects , Mice , Neostriatum/drug effects , Neostriatum/metabolism , Neurotoxicity Syndromes/drug therapy , Substantia Nigra/drug effects , Substantia Nigra/metabolism
12.
Cell Mol Neurobiol ; 36(6): 1015-1022, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26749581

ABSTRACT

α-Tocopheryl phosphate (αTP) is a phosphorylated form of α-tocopherol. Since it is phosphorylated in the hydroxyl group that is essential for the antioxidant property of α-tocopherol, we hypothesized that αTP would modulate the antioxidant system, rather than being an antioxidant agent per se. α-TP demonstrated antioxidant activity in vitro against iron-induced oxidative stress in a mitochondria-enriched fraction preparation treated with 30 or 100 µM α-TP. However, this effect was not observed ex vivo with mitochondrial-enriched fraction from mice treated with an intracerebroventricular injection of 0.1 or 1 nmol/site of αTP. Two days after treatment (1 nmol/site αTP), peroxiredoxin 2 (Prx2) and glutathione reductase (GR) expression and GR activity were decreased in cerebral cortex and hippocampus. Glutathione content, glutathione peroxidase, and thioredoxin reductase activities were not affected by αTP. In conclusion, the persistent decrease in GR and Prx2 protein content is the first report of an in vivo effect of αTP on protein expression in the mouse brain, potentially associated to a novel and biologically relevant function of this naturally occurring compound.


Subject(s)
Antioxidants/pharmacology , Brain/drug effects , Glutathione Reductase/metabolism , Oxidative Stress/drug effects , Peroxiredoxins/metabolism , alpha-Tocopherol/analogs & derivatives , Animals , Antioxidants/metabolism , Brain/metabolism , Glutathione Peroxidase/drug effects , Glutathione Peroxidase/metabolism , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction , alpha-Tocopherol/pharmacology
13.
Fish Shellfish Immunol ; 46(2): 566-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26210700

ABSTRACT

Bivalves are animals with worldwide distribution. Although they play key roles in economic activities, human feeding and environmental studies, there is a considerable lack of knowledge about the relationship between their immune system and antioxidant defenses. Here, we performed an in vitro experiment where Crassostrea gigas hemocytes were exposed to the electrophilic compound 1-chloro-2,4-dinitrobenzene (CDNB, 0.1-50 µM) for one hour. CDNB treatment clearly disturbed thiol homeostasis, causing a concentration-dependent decrease in the glutathione (GSH) content and a decrease in the activity of two thiol reductases, glutathione reductase (GR - 2.5 and 50 µM CDNB) and thioredoxin reductase (TrxR - only 50 µM CDNB). The MTT reduction assay showed that none of the CDNB concentrations tested significantly altered cell viability. However, there was a decrease in the hemocyte's ability to uptake the neutral red dye, which indicates lysosomal impairment (≥12.5 µM CDNB). Cellular immunocompetence was further investigated and, despite the lower GSH content, GR activity and impairment in lysosome integrity, hemocyte functions (adhesion capacity, phagocytosis of latex beads and laminarin-induced ROS production) were preserved in the 2.5 and 12.5 µM CDNB treatments. These results suggest a minor importance of thiol pools and GR activity in C. gigas hemocyte's immunocompetence, in an in vitro acute exposure model. The 50 µM CDNB treatment, however, significantly compromised all the measured hemocyte functions. This response was associated with TrxR inhibition, increased lysosome impairment, decreased GSH content, and lower GR activity. Therefore, it seems that TrxR may be particularly important for the hemocyte function, or, alternatively, it is only affected when a deeply aggravated scenario in thiol homeostasis is set up. Such findings point out the need for further studies towards a better understanding of antioxidant and immune defenses interactions in bivalve cellular systems.


Subject(s)
Crassostrea/drug effects , Dinitrochlorobenzene/pharmacology , Hemocytes/drug effects , Immunity, Innate/drug effects , Sulfhydryl Compounds/metabolism , Animals , Cell Adhesion/drug effects , Crassostrea/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Hemocytes/metabolism , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism , Thioredoxin-Disulfide Reductase/metabolism
14.
Ecotoxicology ; 24(1): 232-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25218178

ABSTRACT

Disperse Red 1 (DR1) is an azo dye that can reach the aquatic environment through the discharge of textile industrial wastewaters. It has been tested in Daphnia similis and shown to be highly toxic. Cytochrome P450 (CYP) is a class of enzymes involved in phase I of detoxification, while glutathione S-transferase (GST) are a class of phase II enzymes. No information about phase I or II dye metabolism in microcrustacea were found in the literature. In this study we identified CYP and GST enzymes involved in the metabolism of DR1 in juveniles of D. similis. Using spectrophotometric analysis we showed that 50 % of the dye was absorbed by the organisms, which could be confirmed by the reddish color of animals exposed to DR1, however adsorption cannot be ruled out. GST activity increased from 280 to 615 nmol(-1 )min(-1 )mg when D. similis were exposed for 48 h to 0.2 mg L(-1) DR1 and from 274 to 815 nmol(-1) min(-1 )mg when exposed to 5 mg L(-1). Data clearly demonstrate that exposure to DR1 can stimulate a strong induction of GST activity, whose participation in DR1 metabolism needs to be confirmed. The induction of GST activity seems to be dependent on CYP activity, since treatment with SKF535A, a CYP inhibitor, blocked the DR1-dependent GST induction. We speculate that GST is involved in DR1 metabolism in Daphnia and that CYP activity is necessary to induce GST-activity, which is an indirect evidence of its role in the biotransformation of DR1.


Subject(s)
Azo Compounds/toxicity , Coloring Agents/toxicity , Cytochrome P-450 Enzyme System/metabolism , Daphnia/drug effects , Glutathione Transferase/metabolism , Animals , Azo Compounds/metabolism , Coloring Agents/metabolism , Daphnia/enzymology , Toxicity Tests, Acute , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
15.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37944523

ABSTRACT

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Subject(s)
Ferroptosis , Iron Overload , Animals , Mice , Caenorhabditis elegans , Oleic Acid/pharmacology , Peroxisome Proliferator-Activated Receptors , Iron Overload/drug therapy , Iron , Phospholipid Ethers
16.
Parasitol Res ; 112(6): 2361-6, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23529337

ABSTRACT

The aim of this study was to evaluate the changes in hematological and biochemical parameters of blood during acute Trypanosoma evansi infection in Wistar rats. The end points studied were hematologic parameters, red blood cell fragility, iron content, and glutathione and lipid peroxidation levels. Forty-eight animals were infected with trypomastigotes and distributed into five groups according to the level of parasitemia. Twelve non-inoculated animals were used as control. Parasitemia increased progressively, reaching highest scores at 15 days post-inoculation. At this point, several deleterious effects were observed such as an increase in iron content, in osmotic fragility, and in lipid peroxidation index, while glutathione decreased drastically. These changes were highly correlated to parasitemia (p < 0.0001) and among each other (p ≤ 0.001). Hematological indices (Hb, packed cell volume (PCV), red blood cells (RBC), and mean corpuscular hemoglobin concentration) were also correlated to parasitemia (p ≤ 0.0003) but failed to correlate to the other variables. Along with increase in iron, RBC fragility produced a decrease in RBC, PCV, and Hb, but not in mean corpuscular volume. Decrease in glutathione was negatively correlated to the end products of lipid peroxidation, clearly indicating the establishment of a pro-oxidant condition. The results show that the infection causes hematological impairments, increases iron and osmotic fragility, along with marked oxidative stress in red blood cells of rats inoculated with T. evansi.


Subject(s)
Glutathione/blood , Iron/blood , Trypanosoma/growth & development , Trypanosomiasis/pathology , Animals , Blood/parasitology , Blood Chemical Analysis , Disease Models, Animal , Lipid Peroxidation , Oxidation-Reduction , Parasitemia , Rats , Rats, Wistar
17.
Mar Drugs ; 10(3): 583-597, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22611355

ABSTRACT

Hemocytes mediate a series of immune reactions essential for bivalve survival in the environment, however, the impact of harmful algal species and their associated phycotoxins upon bivalve immune system is under debate. To better understand the possible toxic effects of these toxins, Crassostrea gigas hemocytes were exposed to brevetoxin (PbTx-2). Hemocyte viability, monitored through the neutral red retention and MTT reduction assays, and apoptosis (Hoechst staining) remained unchanged during 12 h of exposure to PbTx-2 in concentrations up to 1000 µg/L. Despite cell viability and apoptosis remained stable, hemocytes incubated for 4 h with 1000 µg/L of PbTx-2 revealed higher expression levels of Hsp70 (p < 0.01) and CYP356A1 (p < 0.05) transcripts and a tendency to increase FABP expression, as evaluated by Real-Time quantitative PCR. The expression of other studied genes (BPI, IL-17, GSTO, EcSOD, Prx6, SOD and GPx) remained unchanged. The results suggest that the absence of cytotoxic effects of PbTx-2 in Crassostrea gigas hemocytes, even at high concentrations, allow early defense responses to be produced by activating protective mechanisms associated to detoxification (CYP356A1 and possibly FABP) and stress (Hsp70), but not to immune or to antioxidant (BPI, IL-17, EcSOD, Prx6, GPx and SOD) related genes.


Subject(s)
Crassostrea/physiology , Hemocytes/physiology , Marine Toxins/pharmacology , Oxocins/pharmacology , Transcription, Genetic/drug effects , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Cell Separation , Cell Survival/drug effects , Coloring Agents , DNA, Complementary/biosynthesis , Hemocytes/drug effects , Hemocytes/metabolism , Hemolymph/cytology , Inactivation, Metabolic , Neutral Red , RNA/biosynthesis , Real-Time Polymerase Chain Reaction , Stress, Physiological/genetics , Tetrazolium Salts , Thiazoles
18.
Inflammation ; 45(5): 1895-1910, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35727396

ABSTRACT

The association between chronic kidney disease (CKD) and pulmonary pathophysiological changes is well stablished. Nevertheless, the effects of aerobic exercise (AE) on lungs of CKD need further clarification. Thus, Swiss mice were divided in control, AE, CKD, and CKD + AE groups. CKD was induced by 0.2% adenine intake during 8 weeks (4 weeks of CKD induction and 4 weeks of AE). AE consisted in running on treadmill, at moderate intensity, 30 min/day, 5 days/week, during 4 weeks. Twenty-four hours after the last training day, functional capacity test was performed, and 48 h after the test, mice were euthanized. CKD mice showed a significant increase in urine output, serum urea, and creatinine concentrations, and decreased body weight and urine density, besides oxidative damage (p = 0.044), edema area (p < 0.001), leukocyte infiltration (p = 0.040), and collagen area in lung tissue (p = 0.004). AE resulted in an increase of distance traveled (p = 0.049) and maximum speed (p = 0.046), increased activity of catalase (p = 0.031) and glutathione peroxidase (p = 0.048) in lungs, increased levels of nitric oxide (NOx) in serum (p = 0.001) and bronchoalveolar lavage fluid (p = 0.047), and decreased kidney histological injury (p = 0.018) of CKD mice. However, AE also increased oxidative damage (p = 0.003) and did not change collagen content or perivascular edema in lungs (p > 0.05) of CKD mice. Therefore, AE attenuated kidney injury and improved antioxidants defenses in lungs. Despite no significant changes in pulmonary damage, AE significantly improved physical performance in CKD mice.


Subject(s)
Antioxidants , Renal Insufficiency, Chronic , Adenine/pharmacology , Animals , Antioxidants/pharmacology , Catalase/metabolism , Creatinine , Glutathione Peroxidase , Kidney/pathology , Lung/metabolism , Mice , Nitric Oxide , Oxidative Stress , Physical Functional Performance , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Urea/pharmacology
19.
Mol Neurobiol ; 58(2): 735-749, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33011857

ABSTRACT

Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer's disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.


Subject(s)
Depression/physiopathology , Dopamine Uptake Inhibitors/pharmacology , Dopamine/deficiency , Memory, Short-Term , Norepinephrine/metabolism , Pyruvaldehyde/adverse effects , Animals , Bupropion/pharmacology , Dopamine/metabolism , Female , Glutathione/metabolism , Immobilization , Memory, Short-Term/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Motor Activity/drug effects , Phosphorylation/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Pyruvaldehyde/administration & dosage , Serotonin/metabolism , Tyrosine 3-Monooxygenase/metabolism
20.
Neurochem Int ; 132: 104585, 2020 01.
Article in English | MEDLINE | ID: mdl-31678323

ABSTRACT

Thioredoxin interacting protein (TXNIP) binds to thioredoxin thereby limiting its activity, but it also promotes internalization of glucose transporters, participates in inflammasome activation, and controls autophagy. Published data and this work demonstrate that TXNIP responds to a number of apparently unrelated stresses, such as serum deprivation, pH change, and oxidative, osmotic and carbonyl stress. Interestingly, we noticed that hyperosmotic (NaCl) and carbonyl (methylglyoxal, MGO) stresses in HT22 neuronal cells produced a rapid loss of TXNIP (half-life ∼12 min), prompting us to search for possible mechanisms controlling this TXNIP loss, including pH change, serum deprivation, calcium metabolism and inhibition of the proteasome and other proteases, autophagy and MAPKs. None of these routes stopped the TXNIP loss induced by hyperosmotic and carbonyl stress. Besides transcriptional, translational and microRNA regulation, there is evidence indicating that mTOR and AMPK also control TXNIP expression. Indeed, AMPK-deficient mouse embryonic fibroblasts failed to respond to phenformin (AMPK activator) and compound C (AMPK inhibitor), while rapamycin induced a marked increase in TXNIP levels, confirming the known AMPK/mTOR control over TXNIP. However, the TXNIP loss induced by NaCl or MGO were observed even in AMPK deficient MEFs or after mTOR inhibition, indicating AMPK/mTOR does not participate in this rapid TXNIP loss. These results suggest that rapid TXNIP loss is a general and immediate response to stress that can improve energy availability and antioxidant protection, eventually culminating in better cell survival.


Subject(s)
Carbon/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Neurons/metabolism , Osmotic Pressure/physiology , Oxidative Stress/physiology , Thioredoxins/antagonists & inhibitors , Thioredoxins/metabolism , Animals , Carrier Proteins/genetics , Cell Line, Transformed , Mice , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Thioredoxins/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL