Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biosens Bioelectron ; 259: 116404, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38772248

ABSTRACT

Periodontitis, a chronic disease, can result in irreversible tooth loss and diminished quality of life, highlighting the significance of timely periodontitis monitoring and treatment. Meanwhile, hydrogen sulfide (H2S) in saliva, produced by pathogenic bacteria of periodontitis, is an important marker for periodontitis monitoring. However, the easy volatility and chemical instability of the molecule pose challenges to oral H2S sensing. Here, we report a wearable hydrogel-based radio frequency (RF) sensor capable of in situ H2S detection and antibacterial treatment. The RF sensor comprises an agarose hydrogel containing conjugated silver nanoparticles-chlorhexidine (AG-AgNPs-CHL hydrogel) integrated with split-ring resonators. Adhered to a tooth, the hydrogel-based RF sensor enables wireless transmission of sensing signals to a mobile terminal and a concurrent release of the broad-spectrum antibacterial agent chlorhexidine without complex circuits. With the selective binding of the AgNPs to the sulfidion, the RF sensor demonstrates good sensitivity, a wide detection range (2-30 µM), and a low limit of detection (1.2 µM). Compared with standard H2S measurement, the wireless H2S sensor can distinguish periodontitis patients from healthy individuals in saliva sample tests. The hydrogel-based wearable sensor will benefit patients with periodontitis by detecting disease-related biomarkers for practical oral health management.


Subject(s)
Anti-Bacterial Agents , Biosensing Techniques , Hydrogels , Hydrogen Sulfide , Metal Nanoparticles , Periodontitis , Radio Waves , Saliva , Silver , Humans , Hydrogen Sulfide/analysis , Periodontitis/microbiology , Periodontitis/drug therapy , Silver/chemistry , Biosensing Techniques/methods , Hydrogels/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Saliva/chemistry , Saliva/microbiology , Metal Nanoparticles/chemistry , Chlorhexidine , Wearable Electronic Devices , Limit of Detection
2.
Nat Commun ; 15(1): 4035, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740742

ABSTRACT

Rapid and accurate detection of respiratory virus aerosols is highlighted for virus surveillance and infection control. Here, we report a wireless immunoassay technology for fast (within 10 min), on-site (wireless and battery-free), and sensitive (limit of detection down to fg/L) detection of virus antigens in aerosols. The wireless immunoassay leverages the immuno-responsive hydrogel-modulated radio frequency resonant sensor to capture and amplify the recognition of virus antigen, and flexible readout network to transduce the immuno bindings into electrical signals. The wireless immunoassay achieves simultaneous detection of respiratory viruses such as severe acute respiratory syndrome coronavirus 2, influenza A H1N1 virus, and respiratory syncytial virus for community infection surveillance. Direct detection of unpretreated clinical samples further demonstrates high accuracy for diagnosis of respiratory virus infection. This work provides a sensitive and accurate immunoassay technology for on-site virus detection and disease diagnosis compatible with wearable integration.


Subject(s)
Hydrogels , Influenza A Virus, H1N1 Subtype , SARS-CoV-2 , Wireless Technology , Immunoassay/methods , Immunoassay/instrumentation , Humans , Hydrogels/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Wireless Technology/instrumentation , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Aerosols , COVID-19/diagnosis , COVID-19/virology , COVID-19/immunology , Antigens, Viral/immunology , Antigens, Viral/analysis , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/isolation & purification , Limit of Detection
3.
Lab Chip ; 23(15): 3424-3432, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37404057

ABSTRACT

Creatinine and albumin are crucial biomarkers for health monitoring and their ratio in urine is an effective approach for albuminuria assessment. Herein, to address the challenges of point-of-care and efficient analysis of the biomarkers simultaneously, we developed a fully integrated handheld smartphone-based photoelectrochemical biosensing system. A miniaturized printed circuit board included a potentiostat for photocurrent measurements and single-wavelength light-emitting diodes (LEDs) for photo-excitation, which was controlled with a Bluetooth-enabled smartphone. Graphitic carbon nitride (g-C3N4)/chitosan nanocomposites were modified on a transparent indium tin oxide (ITO) electrode as photoactive materials. Creatinine was detected through chelate formation with copper ion probes, while albumin was recognized specifically by an antigen-antibody reaction based on immunoassay. The biosensing system demonstrated good linearity and high sensitivity, with detection ranges of 100 µg mL-1 to 1500 µg mL-1 for creatinine, and 9.9 µg mL-1 to 500 µg mL-1 for albumin. Spiked artificial urine samples with different concentrations were tested to confirm the practical validity of the biosensing system, where an acceptable recovery rate ranged from 98.7% to 105.3%. This portable photoelectrochemical biosensing platform provides a convenient and cost-effective method for biofluid analysis, which has an extensive prospect in point-of-care testing (POCT) for mobile health.


Subject(s)
Biosensing Techniques , Smartphone , Electrochemical Techniques/methods , Creatinine , Point-of-Care Systems , Biomarkers , Albumins , Biosensing Techniques/methods , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL