ABSTRACT
A thin-layer source for the counting of polonium isotopes by alpha spectrometry can be rapidly prepared using microprecipitation with tellurium. Polonium was first coprecipitated with the reduction of tellurium by stannous chloride, followed by microfiltration onto a membrane filter for counting. This microprecipitation method is faster, cheaper, and more convenient than the traditional spontaneous deposition method, with an excellent Po recovery (>90%) under optimal conditions. The influences of several experimental parameters, including Te(IV) quantity, reaction time, and HCl molarity, were examined to determine the optimal conditions for Te microprecipitation. The decontamination factors of potential interferences from various radionuclides (Ra, Th, U, Pu, Am) for the counting of long-lived polonium isotopes (208Po, 209Po, and 210Po) were also evaluated, and the results confirmed a good selectivity on polonium by this microprecipitation method. Due to its strong resistance to high acidity up to 12 M HCl, the method would be particularly suitable for rapid determination of 210Po in acid leaching solution of solid samples.
ABSTRACT
Ultralow level analysis of actinides in urine samples may be required for dose assessment in the event of internal exposures to these radionuclides at nuclear facilities and nuclear power plants. A new bioassay method for analysis of sub-femtogram levels of Am and Cm in large-volume urine samples was developed. Americium and curium were co-precipitated with hydrous titanium oxide from the urine matrix and purified by column chromatography separation. After target preparation using mixed titanium/iron oxides, the final sample was measured by compact accelerator mass spectrometry. Urine samples spiked with known quantities of Am and Cm isotopes in the range of attogram to femtogram levels were measured for method evaluation. The results are in good agreement with the expected values, demonstrating the feasibility of compact accelerator mass spectrometry (AMS) for the determination of minor actinides at the levels of attogram/liter in urine samples to meet stringent sensitivity requirements for internal dosimetry assessment.
Subject(s)
Americium/urine , Curium/urine , Mass Spectrometry/methods , Isotopes , Limit of DetectionABSTRACT
Polonium-210 ((210)Po) can be rapidly determined in drinking water and urine samples by alpha spectrometry using copper sulfide (CuS) microprecipitation. For drinking water, Po in 10 mL samples was directly coprecipitated onto the filter for alpha counting without any purification. For urine, 10 mL of sample was heated, oxidized with KBrO3 for a short time (â¼5 min), and subsequently centrifuged to remove the suspended organic matter. The CuS microprecipitation was then applied to the supernatant. Large batches of samples can be prepared using this technique with high recoveries (â¼85%). The figures of merit of the methods were determined, and the developed methods fulfill the requirements for emergency and routine radioassays. The efficiency and reliability of the procedures were confirmed using spiked samples.
Subject(s)
Copper/chemistry , Drinking Water/chemistry , Polonium/analysis , Humans , Polonium/urineABSTRACT
There is a growing demand for the rapid determination of hard-to-detect radionuclides in environmental and biological samples for environmental monitoring, radiological protection, and nuclear forensic reasons. A new method using five-column chromatography separation has been developed for the simultaneous determination of Pu, Np, Th, U, Am, Cm, Pm, Y, and Sr isotopes, as well as iron-55, by inductively coupled mass spectrometry (ICPMS), α spectrometry, Cerenkov and liquid scintillation (LS) counting. Spiked swipe and water samples as well as proficient testing water standards were analyzed to validate the separation procedure, and the results are in good agreement with the expected values. The method provides quick sample turnaround time and high analysis throughput with low analysis cost. The flexibility of the method also allows for its easy adaptation to various emergency and routine radioassays.
ABSTRACT
Rationale: 212Pb, a promising in vivo alpha-particle generator of 212Bi, has aroused much interest as a therapeutic radionuclide. For the development of targeted alpha therapy (TAT), it is important to determine the contribution of targeted effects in irradiated cells, and also of non-targeted effects in non-irradiated bystander cells. Currently, the critical roles of mitochondrial transfer in cellular crosstalk have garnered significant attention. However, the specific involvement of damaged mitochondrial transfer in orchestrating this alpha-particle radiation-induced bystander effect (RIBE) needs to be further explored. Methods: A novel alpha-emitting radiopharmaceutical, 212Pb-hydrogel nanoparticles (HNPs), was synthesized and subsequently evaluated its theranostics effects. The impact of irradiated cell-conditioned media (ICCM), collected at different times post-212Bi irradiation, on bystander cancer cells regarding cell viability was also investigated. Additionally, damaged mitochondria were isolated and cultured with non-irradiated bystander cells to assess their role. Results: 212Pb-HNPs exhibited efficient therapeutic antitumor effects in vitro, including increased GSH depletion, ROS accumulation, and mitochondrial damage in irradiated tumor cells. In vivo studies demonstrated its imaging potential through SPECT/CT, and RNA sequencing results indicated activation of oxidative stress-related pathways in irradiated tumors. Additionally, ICCM influenced the viability of non-irradiated bystander cells, suggesting a radiation-induced bystander effect by the alpha-particle 212Bi. Interestingly, damaged mitochondria isolated from ICCM were observed to enter co-cultured non-irradiated bystander cells. Further experiments confirmed that the transfer of damaged mitochondria results in the death of non-irradiated bystander cells. Conclusion: The present study highlights the theranostic potential of the alpha-particle generator 212Pb and, more importantly, elucidates the role of damaged mitochondrial transfer in alpha-particle RIBE. These findings provide a novel theoretical mechanism for the antitumor effects of alpha-particles and expand the clinical application prospects of TAT.
Subject(s)
Alpha Particles , Bystander Effect , Lead Radioisotopes , Mitochondria , Bystander Effect/radiation effects , Mitochondria/metabolism , Mitochondria/radiation effects , Alpha Particles/therapeutic use , Humans , Animals , Mice , Cell Line, Tumor , Nanoparticles , Reactive Oxygen Species/metabolism , Cell Survival/radiation effects , Radiopharmaceuticals/pharmacologyABSTRACT
Thin-layer polonium (Po) sources for alpha spectrometry counting can be rapidly prepared using copper sulfide (CuS) microprecipitation. Polonium was coprecipitated with CuS, filtered onto Eichrom Resolve filters, and counted. This simple procedure is faster, cheaper, and more convenient than traditional spontaneous plating on metallic discs, and similar yields were obtained (80-90%). The experimental conditions for the microprecipitation technique were optimized (0.05 mg of Cu(2+) in 10 mL of 1 M HCl); these compare advantageously with conventional preparation and purification procedures for polonium samples (0.1 to 1 M HCl). The results showed that the most likely potential radionuclide interferences (Ra, Th, U, Np, Pu, and Am) for long-lived polonium isotopes ((208)Po, (209)Po, (210)Po) are effectively removed during processing. The effects of several transition metals (Cu(2+), Ag(+), Fe(3+), Fe(2+), Pb(2+), and Ni(2+)) on the yield and the resolution of the alpha peaks obtained were also assessed. Little interference was found, demonstrating the versatility of the present microprecipitation technique for environmental and biological matrices. The procedure has been successfully applied to different amounts of (210)Po using (209)Po as a yield tracer.
ABSTRACT
When responding to an emergency radiological incident, rapid methods are needed to provide the physicians and radiation protection personnel with an early estimation of possible internal dose resulting from the inhalation of radionuclides. This information is needed so that appropriate medical treatment and radiological protection control procedures can be implemented. Nasal swab analysis, which employs swabs swiped inside a nostril followed by liquid scintillation counting of alpha and beta activity on the swab, could provide valuable information to quickly identify contamination of the affected population. In this study, various parameters (such as alpha/beta discrimination, swab materials, counting time and volume of scintillation cocktail etc) were evaluated in order to optimise the effectiveness of the nasal swab analysis method. An improved nasal swab procedure was developed by replacing cotton swabs with polyurethane-tipped swabs. Liquid scintillation counting was performed using a Hidex 300SL counter with alpha/beta pulse shape discrimination capability. Results show that the new method is more reliable than existing methods using cotton swabs and effectively meets the analysis requirements for screening personnel in an emergency situation. This swab analysis procedure is also applicable to wipe tests of surface contamination to minimise the source self-absorption effect on liquid scintillation counting.
Subject(s)
Air Pollutants, Radioactive/analysis , Biological Assay/methods , Nasal Mucosa/chemistry , Radiation Monitoring/methods , Radioisotopes/analysis , Scintillation Counting/methods , Humans , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
A novel method for the determination of 99Tc in water samples was developed using stable Re as a chemical yield tracer and TiCl3 as a reducing agent. The influences of several experimental parameters, including TiCl3 concentration, HCl concentration and reaction time, on the reduction of TcO4- and ReO4- as well as Ti(OH)3-TcO2-ReO2 co-precipitation were investigated. Tc(VII) and Re(VII) retained on TK200 resin were effectively eluted by 5 mL of 1 mol/L NH4SCN, which can be directly mixed with the scintillation cocktail for liquid scintillation counting. The results show that the chemical behaviors of Tc and Re are very consistent in the whole procedure. The decontamination factors of potential interferences from ß-emitting nuclides mainly released from nuclear fuel reprocessing plants were also evaluated, and the minimum detectable activity concentration was calculated to be 0.08 Bq/L for 99Tc in water samples with a counting time of 2 h.
Subject(s)
Radiation Monitoring , Scintillation Counting , Titanium , WaterABSTRACT
A simultaneous analytical method for sequential separation and determination of actinides and 90Sr in large-size environmental samples has been developed. In this method, successive co-precipitation steps were firstly conducted to remove matrix elements, then sequential column separation method was applied for simultaneous separation and purification of actinides and 90Sr/90Y. By using vacuum box technology, the total analytical time was minimized and batch processing allowed analyzing 12 samples in four days. The activity of 90Sr was obtained immediately by measuring its daughter radionuclide (90Y) with triple-to-double coincidence ratio (TDCR) Cherenkov counting, while the concentrations of Pu isotopes and 241Am could be measured by alpha spectrometry and mass spectrometric techniques. The overall recoveries of Pu, Am, Sr and Y were higher than 70% for the entire procedure, while the recovery ratios of Sr/Y were between 0.95 and 1.04 before chromatographic separation. The developed method was verified using 20 g and 50 g of environmental soil samples spiked with certified reference materials IAEA-384 or IAEA-385 and standard solution of 90Sr/90Y, and good agreement between the expected values and measured results has been achieved.
Subject(s)
Actinoid Series Elements , Radiation Monitoring , Actinoid Series Elements/analysis , Radiation Monitoring/methods , Soil/chemistry , Strontium Radioisotopes/analysisABSTRACT
Lead-210 in drinking water can be rapidly determined by liquid scintillation counting (LSC) using a new sulfate precipitation method. In this method, 210Pb was first preconcentrated from water using iron hydroxide co-precipitation followed by sulfate precipitation to decontaminate most of non-alkaline earth elements. The Pb in the sulfate precipitate was then dissolved in strong alkaline solution, while alkaline earth elements (Sr, Ba, Ra) were separated as the sulfate/carbonate precipitate. To optimize the method, the influences of different acids and sulfate concentration on sulfate precipitation as well as the effects of pH, the added SO42-/CO32- concentrations and the Sr/Ba contents in the sulfate precipitate on the dissolution of PbSO4 were studied. In addition, X-ray fluorescence (XRF) analysis was applied for rapid determination of the chemical recovery and triple-to-double coincidence ratio (TDCR) quench correction curve for counting of 210Pb by LSC was established. The method was validated using 5â¯L of tap water samples and minimum detectable activity concentration (MDC) of â¼0.016 Bq·L-1 was achieved, which is sufficiently sensitive to meet the guidance level of 0.1 Bq·L-1 for 210Pb in drinking water as recommended by the World Health Organization (WHO).
Subject(s)
Drinking Water/analysis , Lead Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Chemical Precipitation , Fluorescence , Radiation Monitoring , Scintillation Counting , Sulfates/chemistryABSTRACT
Due to the nature of Cerenkov radiation and instrumental limitations, detection efficiencies of 210Bi by Cerenkov counting are generally quite low (~15%). Sodium salicylate, acting as a wavelength shifter, has been used to improve the detection efficiency of Cerenkov photons. In this study, we found that the addition of sodium salicylate could significantly increase the counting efficiencies of 210Pb/210Bi in aqueous samples. Meanwhile, a sharp increase of the counting efficiency for the alphas from 210Po was also observed with the addition of high concentration of sodium salicylate, implying that scintillation light rather than Cerenkov photons from the alphas has been produced. Detailed studies about the effects of sodium salicylate on the counting of 210Pb, 210Bi and 210Po were conducted. At low concentration (< 0.5â¯mgâ¯g-1) of sodium salicylate, only a small increase in Cerenkov counting efficiency for 210Bi by the wavelength-shifting effect could be observed. Meanwhile, the counting efficiency for 210Bi at high concentration (> 1â¯mgâ¯g-1) of sodium salicylate would significantly increase due to the scintillation effect.
ABSTRACT
There is a growing demand for the determination of actinides in soil and sediment samples for environmental monitoring and tracing, radiological protection, and nuclear forensic reasons. A total sample dissolution method based on lithium metaborate fusion, followed by sequential column chromatography separation, was developed for simultaneous determination of Pu, Am and Cm isotopes in large-size environmental samples by alpha spectrometry and mass spectrometric techniques. The overall recoveries of both Pu and Am for the entire procedure were higher than 70% for large-size soil samples. The method was validated using 20â¯g of soil samples spiked with known amounts of 239Pu and 241Am as well as the certified reference materials IAEA-384 (Fangataufa Lagoon sediment) and IAEA-385 (Irish Sea sediment). All the measured results agreed very well with the expected values.
Subject(s)
Actinoid Series Elements/analysis , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Models, Chemical , Soil/chemistryABSTRACT
An improved method was developed to rapidly determine strontium-90 (90Sr) in cow's milk samples in the event of a nuclear emergency. To perform this method, no heating or ashing steps were needed and all of the material used was disposable. Stable Sr tracer was added to each 40 mL milk sample. Hydrochloric acid (HCl) and trichloroacetic acid (TCA) were added to the sample to flocculate the suspended fat and proteins in the milk. The sample was centrifuged and the strontium in the supernatant was precipitated with carbonate. The resulting precipitate was dissolved in 8 M HNO3 and the solution was passed through a Sr resin to remove potential interferents. Strontium was eluted from the resin using a small volume of water. Strontium-90 was measured by liquid-scintillation counting (LSC) and the tracer by inductively coupled plasma mass spectrometry (ICP-MS). The figures of merit of the method were determined and the method was validated using spiked samples.
Subject(s)
Radiation Monitoring/methods , Radioactive Pollutants/analysis , Strontium Radioisotopes/analysis , Animals , Cattle , Female , Milk/chemistryABSTRACT
A new radiochemical separation method has been developed for rapid determination of alpha-emitting radium isotopes in seawater samples. This method can be applied for the measurement of 226Ra in seawater samples when 224Ra is used as tracer for chemical recovery correction. Likewise, 226Ra can also be added as tracer for the determination of 224Ra in seawater sample. In the method, radium is first pre-concentrated with hydrous titanium oxide (HTiO) and is purified by combined anion/cation exchange column chromatographic separation. The radium in the eluate is then co-precipitated with HTiO, dissolved in 9 M H2SO4, and followed through a BaSO4 micro-precipitation step to prepare a thin-layer counting source to determine the activities of 224Ra/226Ra by alpha spectrometry. Replicate spike and blank samples were measured to evaluate the performance of the procedure. The minimum detectable activity concentration was determined to be 0.5 mBq·L-1 for 226Ra and 0.4 mBq·L-1 for 224Ra in 1 L of seawater sample with a counting time of 48 h. The method is a promising candidate for rapid measurement for alpha-emitting Ra isotopes in a large population of environment water samples.
Subject(s)
Radiation Monitoring/methods , Radium/analysis , Seawater/chemistry , Water Pollutants, Radioactive/analysis , Radiation Monitoring/instrumentation , Spectrum AnalysisABSTRACT
Technetium-99 (99Tc) determination at trace level by inductively coupled plasma mass spectrometry (ICP-MS) is challenging because there is no readily available appropriate Tc isotopic tracer. A new method using Re as a recovery tracer to determine 99Tc in fresh water samples, which does not require any evaporation step, was developed. Tc(VII) and Re(VII) were pre-concentrated on a small anion exchange resin (AER) cartridge from one litre of water sample. They were then efficiently eluted from the AER using a potassium permanganate (KMnO4) solution. After the reduction of KMnO4 in 2 M sulfuric acid solution, the sample was passed through a small TRU resin cartridge. Tc(VII) and Re(VII) retained on the TRU resin were eluted using near boiling water, which can be directly used for the ICP-MS measurement. The results for method optimisation, validation and application were reported.
ABSTRACT
A rapid method has been developed for the direct determination of radiostrontium ((89)Sr and (90)Sr) released in seawater in the early phase of an accident. The method employs a fast and effective pre-concentration of radiostrontium by Sr-Ca co-precipitation followed by separation of radiostrontium using extraction chromatography technique. Radiostrontium is effectively separated in the presence of excessive dominant salts of seawater. Cerenkov and liquid scintillation assay (LSA) techniques are used to determine (89)Sr and (90)Sr. Sample preparation time is approximately 4 h for a set of 10 samples. The method was validated using spiked seawater samples at various activity ratios of (89)Sr:(90)Sr ranging from 1:10 to 9:1. The mean chemical recovery of Sr was 85 ± 3%. (90)Sr showed variable relative bias which enhanced with increasing ratio of (89)Sr:(90)Sr and was in the range ± 21%. The highest biases of (90)Sr determination were due to lower activity concentrations of (90)Sr and are regarded as acceptable in emergency situations with elevated levels of radiostrontium in the sample. The minimum detectable concentration (MDC) of (90)Sr and (89)Sr varied at different (89)Sr:(90)Sr ratios. For 0.1 L seawater and 15 min counting time on a low background Hidex liquid scintillation counter (LSC), the MDC of (90)Sr was in the range of 1.7-3.5 Bq L(-1) and MDC of (89)Sr was in the range 0.5-2.4 Bq L(-1).
Subject(s)
Radiation Monitoring/methods , Seawater/chemistry , Strontium Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Radioactive Hazard Release , Scintillation CountingABSTRACT
A rapid method was developed to efficiently measure (210)Po in urine samples in an emergency situation. Polonium-210 in small urine samples (10 mL) was spontaneously deposited on a stainless steel disc in 1 M HCl at room temperature for 4 h in a polyethylene bottle. The metallic disc was then counted for 4 h by alpha spectrometry. The developed method allowed the preparation of large sample batch in a short time. The method meets the requirements for an emergency bioassay procedure.
Subject(s)
Biological Assay/instrumentation , Emergency Medical Services/methods , Polonium/analysis , Radiation Exposure/analysis , Radiation Monitoring/instrumentation , Urinalysis/instrumentation , Biological Assay/methods , Equipment Design , Equipment Failure Analysis , Humans , Mass Screening/instrumentation , Mass Screening/methods , Radiation Monitoring/methods , Reproducibility of Results , Sensitivity and Specificity , Specimen Handling/instrumentation , Specimen Handling/methods , Spectrum Analysis/instrumentation , Spectrum Analysis/methods , Urinalysis/methodsABSTRACT
Nine laboratories participated in an intercomparison exercise organised by the European Radiation Dosimetry Group (EURADOS) for emergency radiobioassay involving four high-risk radionuclides ((239)Pu, (241)Am, (90)Sr and (226)Ra). Diverse methods of analysis were used by the participating laboratories for the in vitro determination of each of the four radionuclides in urine samples. Almost all the methods used are sensitive enough to meet the requirements for emergency radiobioassay derived for this project in reference to the Clinical Decision Guide introduced by the NCRP. Results from most of the methods meet the requirements of ISO 28218 on accuracy in terms of relative bias and relative precision. However, some technical gaps have been identified. For example, some laboratories do not have the ability to assay samples containing (226)Ra, and sample turnaround time would be expected to be much shorter than that reported by many laboratories, as timely results for internal contamination and early decisions on medical intervention are highly desired. Participating laboratories are expected to learn from each other on the methods used to improve the interoperability among these laboratories.
Subject(s)
Biological Assay/methods , Emergency Medicine/methods , Laboratories/standards , Radiation Monitoring/methods , Radioactive Pollutants/urine , Radiochemistry/methods , Urinalysis/methods , Humans , Radiometry , Reference Standards , Technology Assessment, Biomedical , Urine/chemistryABSTRACT
A new radiochemical separation method has been developed for rapid analysis of (226)Ra in urine samples. In this method, radium is separated from urine matrix using cation and anion exchange column chromatography. A (224)Ra tracer is added, together with its parent in the (228)Th standard, for chemical recovery correction. After separation, the sample is precipitated with hydrous titanium oxide and then prepared for counting by creating a thin-layer counting source using BaSO(4) micro-precipitation. The radium isotopes are then counted by alpha spectrometry. Replicate spike and blank samples were analysed for validation of the procedure. The detection limit was determined to be 0.22 Bq l(-1) with 4 h of counting for 20 ml of urine sample. Using this method, the results can be reported within an 8 h turn-around time. This method is suitable for quick dose assessment of (226)Ra exposure following a radiation emergency.
Subject(s)
Radiation Monitoring , Radioactive Pollutants/analysis , Radium/analysis , Urinalysis/methods , Urine/chemistry , Chromatography, Ion Exchange , Humans , Radioactive Pollutants/isolation & purification , Radium/isolation & purificationABSTRACT
A rapid bioassay method has been developed for the sequential measurements of actinides in human urine samples. The method involves actinide separation from a urine matrix by co-precipitation with hydrous titanium oxide (HTiO), followed by anion exchange and extraction chromatography column purification, and final counting by alpha spectrometry after cerium fluoride micro-precipitation. The minimal detectable activities for the method were determined to be 20 mBq L(-1) or less for plutonium, uranium, americium and curium isotopes, with an 8-h sample turn-around time. Spike tests showed that this method would meet the requirements for actinide bioassay following a radiation emergency.