Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Oncologist ; 22(10): 1154-e105, 2017 10.
Article in English | MEDLINE | ID: mdl-28652279

ABSTRACT

LESSONS LEARNED: Pregabalin is a medication that can decrease neuronal hyperexcitability, relieve neuropathic pain, and reach stable plasma levels after a titration period of only a few days.Its use during oxaliplatin infusions was not able to decrease the incidence of chronic, oxalipaltin-related neuropathic pain, compared with placebo. BACKGROUND: Patients with colorectal cancer (CRC) receiving oxaliplatin (OXA) develop acute and chronic painful oxaliplatin-induced peripheral neuropathy (OXAIPN). Acute and chronic OXA-related neuropathies have different pathophysiological bases, but both lead to a common phenomenon: central sensitization (CS) of nociceptive neuronal networks, leading to increased sensitivity (hyperlgesia, allodynia) in the somatosensory system, the common ground of chronic neuropathic pain. Because CS is related to increased risk of painful OXAIPN, we hypothesized that preemptive use of the anti-hyperalgesic drug pregabaline (known to decrease CS) during OXA infusions would decrease the incidence of chronic OXAIPN. METHODS: Pain-free, chemotherapy-naïve CRC patients receiving at least one cycle of modified-FLOX [5-FU(500 mg/m2)+leucovorin(20 mg/m2)/week for] 6 weeks+oxaliplatin(85 mg/m2) at weeks 1-3-5 every 8 weeks] were randomized (1:1) into the study. Patients received either pregabalin or placebo for 3 days before and 3 days after each OXA infusion and were followed for up to 6 months. Clinical assessments were performed at baseline, at the end of chemotherapy, and after the follow-up period. The main outcome was average pain at the last visit assessed by the visual analogic scale (0-10) item of the Brief Pain Inventory (BPI). Secondary endpoints were presence of neuropathic pain according to the Douleur Neuropathique-4 (DN-4), pain dimensions (short- form McGill Pain Questionnaire [MPQ]), Neuropathic Pain Symptom Inventory (NPSI), and changes in nerve conduction studies (NCS) and side effect profile. RESULTS: One hundred ninety-nine patients (57.0 ± 10.7 years old, 98 female, 101 male) were randomized. Data from 56 patients were not included in the analyses (as they did not receive at least one full cycle of modified FLOX). Data from 78 patients in the pregabalin group and 65 patients in the placebo group were retained for analyses. At the last visit, pain intensity in the pregabalin group was 1.03 (95% confidence interval [CI] = 0.79-1.26), and 0.85 (95% CI = 0.64-1.06) in the placebo group, which did not reach significance. Scores from the BPI, MPQ, DN-4, NPSI, and NCS and side-effect profiles and incidence of death did not differ between groups. Quality of life (QoL) score did not differ between groups (placebo = 76.9 ± 23.1, pregabalin group 79.4 ± 20.6). Mood scores were not significantly different between groups (placebo 9.7 [8.1-11.2]; pregabalin 6.8 [5.6-8.0]). CONCLUSION: The preemptive use of pregabalin during OXA infusions was safe, but did not decrease the incidence of chronic pain related to OXAIPN.


Subject(s)
Anticonvulsants/therapeutic use , Organoplatinum Compounds/adverse effects , Pain/chemically induced , Peripheral Nervous System Diseases/chemically induced , Pregabalin/therapeutic use , Anticonvulsants/administration & dosage , Anticonvulsants/pharmacology , Double-Blind Method , Female , Humans , Male , Middle Aged , Oxaliplatin , Pregabalin/administration & dosage , Pregabalin/pharmacology
2.
Pain ; 163(7): 1414-1423, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34724682

ABSTRACT

ABSTRACT: Diabetic neuropathy, often associated with diabetes mellitus, is a painful condition with no known effective treatment except glycemic control. Studies with neuropathic pain models report alterations in cannabinoid and opioid receptor expression levels; receptors whose activation induces analgesia. We examined whether interactions between CB1R and opioid receptors could be targeted for the treatment of diabetic neuropathy. For this, we generated antibodies that selectively recognize native CB1R-MOR and CB1R-DOR heteromers using a subtractive immunization strategy. We assessed the levels of CB1R, MOR, DOR, and interacting complexes using a model of streptozotocin-induced diabetic neuropathy and detected increased levels of CB1R, MOR, DOR, and CB1R-MOR complexes compared with those in controls. An examination of G-protein signaling revealed that activity induced by the MOR, but not the DOR agonist, was potentiated by low nanomolar doses of CB1R ligands, including antagonists, suggesting an allosteric modulation of MOR signaling by CB1R ligands within CB1R-MOR complexes. Because the peptide endocannabinoid, hemopressin, caused a significant potentiation of MOR activity, we examined its effect on mechanical allodynia and found that it blocked allodynia in wild-type mice and mice with diabetic neuropathy lacking DOR (but have CB1R-MOR complexes). However, hemopressin does not alter the levels of CB1R-MOR complexes in diabetic mice lacking DOR but increases the levels of CB1R-DOR complexes in diabetic mice lacking MOR. Together, these results suggest the involvement of CB1R-MOR and CB1R-DOR complexes in diabetic neuropathy and that hemopressin could be developed as a potential therapeutic for the treatment of this painful condition.


Subject(s)
Cannabinoids , Diabetes Mellitus, Experimental , Diabetic Neuropathies , Neuralgia , Animals , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/drug therapy , Disease Models, Animal , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Ligands , Mice , Neuralgia/drug therapy , Receptors, Opioid , Receptors, Opioid, mu/metabolism
3.
Front Pain Res (Lausanne) ; 3: 1084701, 2022.
Article in English | MEDLINE | ID: mdl-36713643

ABSTRACT

The use of deep brain stimulation (DBS) for the treatment of chronic pain was one of the first applications of this technique in functional neurosurgery. Established brain targets in the clinic include the periaqueductal (PAG)/periventricular gray matter (PVG) and sensory thalamic nuclei. More recently, the anterior cingulum (ACC) and the ventral striatum/anterior limb of the internal capsule (VS/ALIC) have been investigated for the treatment of emotional components of pain. In the clinic, most studies showed a response in 20%-70% of patients. In various applications of DBS, animal models either provided the rationale for the development of clinical trials or were utilized as a tool to study potential mechanisms of stimulation responses. Despite the complex nature of pain and the fact that animal models cannot reliably reflect the subjective nature of this condition, multiple preparations have emerged over the years. Overall, DBS was shown to produce an antinociceptive effect in rodents when delivered to targets known to induce analgesic effects in humans, suggesting a good predictive validity. Compared to the relatively high number of clinical trials in the field, however, the number of animal studies has been somewhat limited. Additional investigation using modern neuroscience techniques could unravel the mechanisms and neurocircuitry involved in the analgesic effects of DBS and help to optimize this therapy.

4.
Sci Signal ; 15(731): eabm6046, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35471943

ABSTRACT

Chronic pain is a major health issue, and the search for new analgesics has become increasingly important because of the addictive properties and unwanted side effects of opioids. To explore potentially new drug targets, we investigated mutations in the NTRK1 gene found in individuals with congenital insensitivity to pain with anhidrosis (CIPA). NTRK1 encodes tropomyosin receptor kinase A (TrkA), the receptor for nerve growth factor (NGF) and that contributes to nociception. Molecular modeling and biochemical analysis identified mutations that decreased the interaction between TrkA and one of its substrates and signaling effectors, phospholipase Cγ (PLCγ). We developed a cell-permeable phosphopeptide derived from TrkA (TAT-pQYP) that bound the Src homology domain 2 (SH2) of PLCγ. In HEK-293T cells, TAT-pQYP inhibited the binding of heterologously expressed TrkA to PLCγ and decreased NGF-induced, TrkA-mediated PLCγ activation and signaling. In mice, intraplantar administration of TAT-pQYP decreased mechanical sensitivity in an inflammatory pain model, suggesting that targeting this interaction may be analgesic. The findings demonstrate a strategy to identify new targets for pain relief by analyzing the signaling pathways that are perturbed in CIPA.


Subject(s)
Hypohidrosis , Mutation , Pain Insensitivity, Congenital , Phospholipase C gamma , Receptor, trkA , Analgesics/pharmacology , Animals , Channelopathies/genetics , Channelopathies/metabolism , HEK293 Cells , Humans , Hypohidrosis/genetics , Hypohidrosis/metabolism , Mice , Nerve Growth Factor/genetics , Nerve Growth Factor/pharmacology , Pain/genetics , Pain/metabolism , Pain Insensitivity, Congenital/genetics , Pain Insensitivity, Congenital/metabolism , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Receptor, trkA/genetics , Receptor, trkA/metabolism
5.
Neuropharmacology ; 183: 108406, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33212113

ABSTRACT

Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Endocannabinoids/physiology , Hemoglobins/pharmacology , Peptide Fragments/pharmacology , Animals , Hemoglobins/chemistry , Hemoglobins/genetics , Hemoglobins/physiology , Humans , Mice , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/physiology , Rats , Receptors, Cannabinoid
6.
Brain Res ; 1754: 147237, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33400930

ABSTRACT

The insula has emerged as a critical target for electrical stimulation since it influences pathological pain states. We investigated the effects of repetitive electrical stimulation of the insular cortex (ESI) on mechanical nociception, and general locomotor activity in rats subjected to chronic constriction injury (CCI) of the sciatic nerve. We also studied neuroplastic changes in central pain areas and the involvement of GABAergic signaling on ESI effects. CCI rats had electrodes implanted in the left agranular posterior insular cortex (pIC), and mechanical sensitivity was evaluated before and after one or five daily consecutive ESIs (15 min each, 60 Hz, 210 µs, 1 V). Five ESIs (repetitive ESI) induced sustained mechanical antinociception from the first to the last behavioral assessment without interfering with locomotor activity. A marked increase in Fos immunoreactivity in pIC and a decrease in the anterior and mid-cingulate cortex, periaqueductal gray and hippocampus were noticed after five ESIs. The intrathecal administration of the GABAA receptor antagonist bicuculline methiodide reversed the stimulation-induced antinociception after five ESIs. ESI increased GAD65 levels in pIC but did not interfere with GABA, glutamate or glycine levels. No changes in GFAP immunoreactivity were found in this work. Altogether, the results indicate the efficacy of repetitive ESI for the treatment of experimental neuropathic pain and suggest a potential influence of pIC in regulating pain pathways partially through modulating GABAergic signaling.


Subject(s)
Analgesia , Electric Stimulation , GABA Modulators/pharmacology , Neuralgia/therapy , Pain Management , Analgesia/methods , Animals , GABA Modulators/metabolism , Hyperalgesia/metabolism , Male , Neuralgia/metabolism , Pain Threshold/drug effects , Periaqueductal Gray/drug effects , Rats, Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 104(51): 20588-93, 2007 Dec 18.
Article in English | MEDLINE | ID: mdl-18077343

ABSTRACT

To date, the endogenous ligands described for cannabinoid receptors have been derived from membrane lipids. To identify a peptide ligand for CB(1) cannabinoid receptors, we used the recently described conformation-state sensitive antibodies and screened a panel of endogenous peptides from rodent brain or adipose tissue. This led to the identification of hemopressin (PVNFKFLSH) as a peptide ligand that selectively binds CB(1) cannabinoid receptors. We find that hemopressin is a CB(1) receptor-selective antagonist, because it is able to efficiently block signaling by CB(1) receptors but not by other members of family A G protein-coupled receptors (including the closely related CB(2) receptors). Hemopressin also behaves as an inverse agonist of CB(1) receptors, because it is able to block the constitutive activity of these receptors to the same extent as its well characterized antagonist, rimonabant. Finally, we examine the activity of hemopressin in vivo using different models of pain and find that it exhibits antinociceptive effects when administered by either intrathecal, intraplantar, or oral routes, underscoring hemopressin's therapeutic potential. These results represent a demonstration of a peptide ligand for CB(1) cannabinoid receptors that also exhibits analgesic properties. These findings are likely to have a profound impact on the development of novel therapeutics targeting CB(1) receptors.


Subject(s)
Drug Inverse Agonism , Hemoglobins/pharmacology , Peptide Fragments/pharmacology , Receptor, Cannabinoid, CB1/agonists , Cell Line , Humans , Ligands
8.
Biomolecules ; 10(2)2020 02 17.
Article in English | MEDLINE | ID: mdl-32079362

ABSTRACT

Thimet oligopeptidase (EC 3.4.24.15; EP24.15; THOP1) is a potential therapeutic target, as it plays key biological functions in processing biologically functional peptides. The structural conformation of THOP1 provides a unique restriction regarding substrate size, in that it only hydrolyzes peptides (optimally, those ranging from eight to 12 amino acids) and not proteins. The proteasome activity of hydrolyzing proteins releases a large number of intracellular peptides, providing THOP1 substrates within cells. The present study aimed to investigate the possible function of THOP1 in the development of diet-induced obesity (DIO) and insulin resistance by utilizing a murine model of hyperlipidic DIO with both C57BL6 wild-type (WT) and THOP1 null (THOP1-/-) mice. After 24 weeks of being fed a hyperlipidic diet (HD), THOP1-/- and WT mice ingested similar chow and calories; however, the THOP1-/- mice gained 75% less body weight and showed neither insulin resistance nor non-alcoholic fatty liver steatosis when compared to WT mice. THOP1-/- mice had increased adrenergic-stimulated adipose tissue lipolysis as well as a balanced level of expression of genes and microRNAs associated with energy metabolism, adipogenesis, or inflammation. Altogether, these differences converge to a healthy phenotype of THOP1-/- fed a HD. The molecular mechanism that links THOP1 to energy metabolism is suggested herein to involve intracellular peptides, of which the relative levels were identified to change in the adipose tissue of WT and THOP1-/- mice. Intracellular peptides were observed by molecular modeling to interact with both pre-miR-143 and pre-miR-222, suggesting a possible novel regulatory mechanism for gene expression. Therefore, we successfully demonstrated the previously unanticipated relevance of THOP1 in energy metabolism regulation. It was suggested that intracellular peptides were responsible for mediating the phenotypic differences that are described herein by a yet unknown mechanism of action.


Subject(s)
Energy Metabolism , Metalloendopeptidases/metabolism , Obesity/metabolism , Adipogenesis , Adipose Tissue/metabolism , Animals , Diet, High-Fat/adverse effects , Female , Gene Deletion , Insulin Resistance , Lipolysis , Male , Metalloendopeptidases/genetics , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics
9.
Neural Regen Res ; 14(11): 2011-2019, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31290460

ABSTRACT

Neuropathic pain after spinal cord injury (SCI) is a complex condition that responds poorly to usual treatments. Cell transplantation represents a promising therapy; nevertheless, the ideal cell type in terms of neurogenic potential and effectiveness against pain remains largely controversial. Here, we evaluated the ability of fetal neural stem cells (fNSC) to relieve chronic pain and, secondarily, their effects on motor recovery. Adult Wistar rats with traumatic SCI were treated, 10 days after injury, with intra-spinal injections of culture medium (sham) or fNSCs extracted from telencephalic vesicles (TV group) or the ventral medulla (VM group) of E/14 embryos. Sensory (von Frey filaments and hot plate) and motor (the Basso, Beattie, Bresnahan locomotor rating scale and inclined plane test) assessments were performed during 8 weeks. Thereafter, spinal cords were processed for immunofluorescence and transplanted cells were quantified by stereology. The results showed improvement of thermal hyperalgesia in the TV and VM groups at 4 and 5 weeks after transplantation, respectively. Moreover, mechanical allodynia improved in both the TV and VM groups at 8 weeks. No significant motor recovery was observed in the TV or VM groups compared with sham. Stereological analyses showed that ~70% of TV and VM cells differentiated into NeuN+ neurons, with a high proportion of enkephalinergic and GABAergic cells in the TV group and enkephalinergic and serotoninergic cells in the VM group. Our study suggests that neuronal precursors from TV and VM, once implanted into the injured spinal cord, maturate into different neuronal subtypes, mainly GABAergic, serotoninergic, and enkephalinergic, and all subtypes alleviate pain, despite no significant motor recovery. The study was approved by the Animal Ethics Committee of the Medical School of the University of São Paulo (protocol number 033/14) on March 4, 2016.

10.
Biomolecules ; 9(8)2019 08 19.
Article in English | MEDLINE | ID: mdl-31431000

ABSTRACT

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.


Subject(s)
Metalloendopeptidases/metabolism , Animals , Behavior, Animal , Female , Male , Metalloendopeptidases/deficiency , Metalloendopeptidases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype
11.
J Neurosci ; 27(24): 6363-73, 2007 Jun 13.
Article in English | MEDLINE | ID: mdl-17567797

ABSTRACT

N-type calcium channels are essential mediators of spinal nociceptive transmission. The core subunit of the N-type channel is encoded by a single gene, and multiple N-type channel isoforms can be generated by alternate splicing. In particular, cell-specific inclusion of an alternatively spliced exon 37a generates a novel form of the N-type channel that is highly enriched in nociceptive neurons and, as we show here, downregulated in a neuropathic pain model. Splice isoform-specific small interfering RNA silencing in vivo reveals that channels containing exon 37a are specifically required for mediating basal thermal nociception and for developing thermal and mechanical hyperalgesia during inflammatory and neuropathic pain. In contrast, both N-type channel isoforms (e37a- and e37b-containing) contribute to tactile neuropathic allodynia. Hence, exon 37a acts as a molecular switch that tailors the channels toward specific roles in pain.


Subject(s)
Alternative Splicing , Calcium Channels, N-Type/physiology , Down-Regulation/physiology , Neuralgia/genetics , Analysis of Variance , Animals , Animals, Newborn , Calcium Channels, N-Type/classification , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Cells, Cultured , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Ganglia, Spinal/cytology , Hyperalgesia/classification , Hyperalgesia/genetics , Hyperalgesia/physiopathology , Hyperalgesia/prevention & control , Membrane Potentials/drug effects , Membrane Potentials/physiology , Membrane Potentials/radiation effects , Neuralgia/classification , Neuralgia/drug therapy , Neurons, Afferent/drug effects , Pain Measurement/methods , Pain Threshold/drug effects , Pain Threshold/physiology , Patch-Clamp Techniques/methods , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , Substance P/metabolism
12.
J Biophotonics ; 11(9): e201800110, 2018 09.
Article in English | MEDLINE | ID: mdl-29749025

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a nervous disorder caused by diabetes mellitus, affecting about 50% of patients in clinical medicine. Chronic pain is one of the major and most unpleasant symptoms developed by those patients, and conventional available treatments for the neuropathy, including the associated pain, are still unsatisfactory and benefit only a small number of patients. Photobiomodulation (PBM) has been gaining clinical acceptance once it is able to promote early nerve regeneration resulting in significant improvement in peripheral nerves disabilities. In this work, the effects of PBM (660 nm, 30 mW, 1.6 J/cm2 , 0.28 cm2 , 15 s in a continuous frequency) on treating DPN-induced pain and nerve damage were evaluated in an experimental model of diabetic-neuropathy induced by streptozotocin in mice. PBM-induced antinociception in neuropathic-pain mice was dependent on central opioids release. After 21 consecutive applications, PBM increased nerve growth factor levels and induced structural recovery increasing mitochondrial content and regulating Parkin in the sciatic nerve of DPN-mice. Taking together, these data provide new insights into the mechanisms involved in the effects of PBM-therapy emphasizing its therapeutic potential in the treatment of DPN.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Homeostasis/radiation effects , Low-Level Light Therapy , Mitochondria/radiation effects , Nociception/radiation effects , Sciatic Nerve/physiopathology , Sciatic Nerve/radiation effects , Animals , Biomechanical Phenomena/radiation effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/therapy , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism
13.
Pain ; 158(8): 1473-1480, 2017 08.
Article in English | MEDLINE | ID: mdl-28621701

ABSTRACT

To evaluate changes in DNA methylation profiles in patients with fibromyalgia (FM) compared to matched healthy controls (HCs). All individuals underwent full clinical and neurophysiological assessment by cortical excitability (CE) parameters measured by transcranial magnetic stimulation. DNA from the peripheral blood of patients with FM (n = 24) and HC (n = 24) were assessed using the Illumina-HumanMethylation450 BeadChips. We identified 1610 differentially methylated positions (DMPs) in patients with FM displaying a nonrandom distribution in regions of the genome. Sixty-nine percent of DMP in FM were hypomethylated compared to HC. Differentially methylated positions were enriched in 5 genomic regions (1p34; 6p21; 10q26; 17q25; 19q13). The functional characterization of 960 genes related to DMPs revealed an enrichment for MAPK signaling pathway (n = 18 genes), regulation of actin cytoskeleton (n = 15 genes), and focal adhesion (n = 13 genes). A gene-gene interaction network enrichment analysis revealed the participation of DNA repair pathways, mitochondria-related processes, and synaptic signaling. Even though DNA was extracted from peripheral blood, this set of genes was enriched for disorders such as schizophrenia, mood disorders, bulimia, hyperphagia, and obesity. Remarkably, the hierarchical clusterization based on the methylation levels of the 1610 DMPs showed an association with neurophysiological measurements of CE in FM and HC. Fibromyalgia has a hypomethylation DNA pattern, which is enriched in genes implicated in stress response and DNA repair/free radical clearance. These changes occurred parallel to changes in CE parameters. New epigenetic insights into the pathophysiology of FM may provide the basis for the development of biomarkers of this disorder.


Subject(s)
Chronic Pain/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Fibromyalgia/genetics , Adult , Epigenomics/methods , Female , Genome-Wide Association Study , Humans , Middle Aged , Pilot Projects , Young Adult
14.
Pharmacol Biochem Behav ; 129: 7-13, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25462856

ABSTRACT

Hemopressin (PVNFKFLSH; HP) is an orally active peptide derived from rat hemoglobin α-chain that could act as an inverse agonist at cannabinoid type 1 receptors (CB1). Here, we aim to investigate possible behavioral effects of HP in male Wistar rats tested in the elevated plus maze (EPM), following HP intraperitoneal (i.p., 0.05 mg/kg), oral (P.O., 0.05 and 0.5 mg/kg) or intracerebroventricular (I.C.V., 3 and 10 nmol) administration. HP induced a decrease in EPM open arm exploration, indicating an anxiogenic-like effect. However, i.p. administration of HP (1 mg/kg) followed by mass spectrometry analysis of brain-peptide extracts suggested that the intact HP does not cross the blood brain barrier. I.C.V. administrated HP produced anxiogenic-like effects that were prevented by Transient Receptor Potential Vanilloid Type 1 (TRPV1) antagonists, 6-iodonordihydrocapsaicin (1 nmol) or SB366791 (1 nmol), but not by the CB1 receptor antagonist AM251 (0.1 and 1 nmol). Altogether, these data suggest that I.C.V. administrated HP induces anxiogenic-like effects by activating TRPV1 receptors. The similar anxiogenic effects observed after i.p. or P.O. administration could be due to HP fragment(s) crossing the blood brain barrier. The present results advance our knowledge about HP pharmacology and suggest concerns in future clinical studies.


Subject(s)
Anxiety/chemically induced , Hemoglobins/pharmacology , Peptide Fragments/pharmacology , Anilides/administration & dosage , Anilides/pharmacology , Animals , Brain/metabolism , Capsaicin/administration & dosage , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cinnamates/administration & dosage , Cinnamates/pharmacology , Hemoglobins/administration & dosage , Hemoglobins/metabolism , Injections, Intraventricular , Male , Maze Learning , Peptide Fragments/administration & dosage , Peptide Fragments/metabolism , Piperidines/administration & dosage , Piperidines/pharmacology , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Rats , Rats, Wistar
15.
Photochem Photobiol ; 90(1): 207-13, 2014 01.
Article in English | MEDLINE | ID: mdl-24131406

ABSTRACT

Envenoming induced by Bothrops snakes is characterized by drastic local tissue damage involving hemorrhage, myonecrosis and proeminent inflammatory and hyperalgesic response. The most effective treatment is antivenom therapy, which is ineffective in neutralizing the local response. Herein, it was evaluated the effectiveness of light-emitting diode (LED) at wavelengths of 635 and 945 nm in reducing inflammatory hyperalgesia induced by Bothrops moojeni venom (BmV) in mice, produced by an subplantar injection of BmV (1 µg). Mechanical hyperalgesia and allodynia were assessed by von Frey filaments at 1, 3, 6 and 24 h after venom injection. The site of BmV injection (1.2 cm(2) ) was irradiated by LEDs at 30 min and 3 h after venom inoculation. Both 635 nm (110 mW, fluence of 3.76 J/cm(2) and 41 s of irradiation time) and 945 nm (120 mW, fluence of 3.8 J/cm(2) and 38 s of irradiation time) LED inhibited mechanical allodynia and hyperalgesia of mice alone or in combination with antivenom treatment, even when the symptoms were already present. The effect of phototherapy in reducing local pain induced by BmV should be considered as a novel therapeutic tool for the treatment of local symptoms induced after bothropic snake bites.


Subject(s)
Hyperalgesia/therapy , Low-Level Light Therapy , Snake Bites/therapy , Analgesics/therapeutic use , Animals , Antivenins/therapeutic use , Bothrops , Mice
16.
Peptides ; 56: 125-31, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24703998

ABSTRACT

Direct-acting cannabinoid receptor ligands are well known to reduce hyperalgesic responses after nerve injury, although their psychoactive side effects have damped enthusiasm for their therapeutic development. Hemopressin (Hp) is a nonapeptide that selectively binds CB1 cannabinoid receptors (CB1 receptors) and exerts antinociceptive action in inflammatory pain models. We investigated the effect of Hp on neuropathic pain in rats subjected to chronic constriction injury (CCI) of the sciatic nerve, and explored the mechanisms involved. Oral administration of Hp inhibits mechanical hyperalgesia of CCI-rats up to 6h. Hp treatment also decreases Egr-1 immunoreactivity (Egr-1Ir) in the superficial layer of the dorsal horn of the spinal cord of CCI rats. The antinociceptive effect of Hp seems to be independent of inhibitory descending pain pathway since methysergide (5HT1A receptor antagonist) and yohimbine (α-2 adrenergic receptor antagonist) were unable to prevent Hp antinociceptive effect. Hp decreased calcium flux on DRG neurons from CCI rats, similarly to that observed for AM251, a CB1 receptor antagonist. We also investigated the effect of Hp on potassium channels of CCI rats using UCL 1684 (a blocker of Ca(2+)-activated K(+) channels) which reversed Hp-induced antinociception. Furthermore, concomitant administration of URB-584 (FAAH inhibitor) but not JZL-184 (MAGL inhibitor) potentiates antinociceptive effect of Hp in CCI rats indicating an involvement of anadamide on HP-induced antinociception. Together, these data demonstrate that Hp displays antinociception in pain from neuropathic etiology through local effects. The release of anandamide and the opening of peripheral K(+) channels are involved in the antinociceptive effect.


Subject(s)
Cannabinoid Receptor Agonists/therapeutic use , Hemoglobins/therapeutic use , Neuralgia/drug therapy , Peptide Fragments/therapeutic use , Animals , Cannabinoids/metabolism , Immunohistochemistry , Male , Neuralgia/metabolism , Potassium Channels/metabolism , Rats , Rats, Wistar
17.
Peptides ; 48: 10-20, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23911313

ABSTRACT

Limited proteolysis of certain proteins leads to the release of endogenous bioactive peptides. Hemoglobin-derived peptides such as hemorphins and hemopressins are examples of intracellular protein-derived peptides that have antinociceptive effects by modulating G-protein coupled receptors activities. In the present study, a previously characterized substrate capture assay that uses a catalytically inactive form of the thimet oligopeptidase was combined with isotopic labeling and mass spectrometry in order to identify new bioactive peptides. Indeed, we have identified the peptide AGHLDDLPGALSAL (AGH), a fragment of the hemoglobin alpha-chain, which specifically bind to the inactive thimet oligopeptidase in the substrate capture assay. Previous peptidomics studies have identified the AGH as well as many other natural peptides derived from hemoglobin alpha-chain containing this sequence, further suggesting that AGH is a natural endogenous peptide. Pharmacological assays suggest that AGH inhibits peripheral inflammatory hyperalgesic responses through indirect activation of mu opioid receptors, without having a central nervous system activity. Therefore, we have successfully used the substrate capture assay to identify a new endogenous bioactive peptide derived from hemoglobin alpha-chain.


Subject(s)
Analgesics/administration & dosage , Hemoglobins/administration & dosage , Hyperalgesia/drug therapy , Pain/drug therapy , Peptides/administration & dosage , Amino Acid Motifs/genetics , Analgesics/chemistry , Animals , Carrageenan/toxicity , Halothane/administration & dosage , Hemoglobins/chemistry , Humans , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/pathology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Mice , Pain/chemically induced , Peptides/chemistry , Rats , Receptors, Opioid, mu , Substrate Specificity
18.
Behav Brain Res ; 250: 211-21, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23692698

ABSTRACT

Motor cortex stimulation (MCS) is used as a therapy for patients with refractory neuropathic pain. Experimental evidence suggests that the motor cortex (MC) is involved in the modulation of normal nociceptive response, but the underlying mechanisms have not been clarified yet. In previous studies, we demonstrated that MCS increases the nociceptive threshold of naive conscious rats by inhibiting thalamic sensory neurons and disinhibiting the neurons in periaqueductal gray (PAG), with the involvement of the opioid system. The aim of this study was to investigate the possible somatotopy of the motor cortex on MCS-induced antinociception and the pattern of neuronal activation evaluated by Fos and Egr-1 immunolabel in an attempt to better understand the relation between MC and analgesia. Rats received epidural electrode implants placed over the MC, in three distinct areas (forelimb, hindlimb or tail), according to a functional mapping established in previous studies. Nociceptive threshold was evaluated under 15-min electrical stimulating sessions. MCS induced selective antinociception in the limb related to the stimulated cortex, with no changes in other evaluated areas. MCS decreased Fos immunoreactivity (Fos-IR) in the superficial layers of the dorsal horn of the spinal cord for all evaluated groups and increased Fos-IR in the PAG, although no changes were observed in the PAG for the tail group. Egr-1 results were similar to those obtained for Fos. Data shown herein demonstrate that MCS elicits a substantial and selective antinociceptive effect, which is mediated, at least in part, by the activation of descendent inhibitory pain pathway.


Subject(s)
Electric Stimulation/methods , Hyperalgesia/therapy , Motor Cortex/physiology , Pain Threshold/physiology , Analysis of Variance , Animals , Disease Models, Animal , Early Growth Response Protein 1/metabolism , Electrodes , Extremities/innervation , Forelimb/physiopathology , Functional Laterality , Gene Expression Regulation/physiology , Male , Nociceptors/physiology , Oncogene Proteins v-fos/metabolism , Pain Measurement , Periaqueductal Gray/metabolism , Physical Stimulation/adverse effects , Rats , Rats, Wistar , Single-Blind Method , Spinal Cord/metabolism , Spinal Cord/pathology , Time Factors
19.
Pain ; 153(12): 2359-2369, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23017297

ABSTRACT

Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, δ-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception.


Subject(s)
Afferent Pathways/physiology , Deep Brain Stimulation/methods , Neural Inhibition/physiology , Nociception/physiology , Nociceptors/physiology , Thalamus/physiology , Animals , Rats
20.
Eur J Pain ; 15(3): 268.e1-14, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20817578

ABSTRACT

Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain.


Subject(s)
Electric Stimulation Therapy , Hyperalgesia/therapy , Motor Cortex/physiopathology , Neuralgia/therapy , Neurons/physiology , Sciatic Nerve/injuries , Animals , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Motor Cortex/metabolism , Neuralgia/metabolism , Neuralgia/physiopathology , Pain Threshold/physiology , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL