Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Crit Care ; 26(1): 206, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35799268

ABSTRACT

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Subject(s)
COVID-19 Drug Treatment , Extracellular Traps , Animals , Disulfiram/metabolism , Extracellular Traps/metabolism , Mice , Neutrophils/metabolism , SARS-CoV-2
2.
FASEB J ; 34(8): 10907-10919, 2020 08.
Article in English | MEDLINE | ID: mdl-32632939

ABSTRACT

Nucleotide oligomerization domain (NOD)-like receptor-12 (NLRP12) has emerged as a negative regulator of inflammation. It is well described that the Th17 cell population increases in patients with early Rheumatoid Arthritis (RA), which correlates with the disease activity. Here, we investigated the role of NLRP12 in the differentiation of Th17 cells and the development of experimental arthritis, using the antigen-induced arthritis (AIA) murine model. We found that Nlrp12-/- mice develop severe arthritis characterized by an exacerbated Th17-mediated inflammatory response with increases in the articular hyperalgesia, knee joint swelling, and neutrophil infiltration. Adoptive transfer of Nlrp12-/- cells into WT mice recapitulated the hyperinflammatory response seen in Nlrp12-/- mice and the treatment with anti-IL-17A neutralizing antibody abrogated arthritis development in Nlrp12-/- mice, suggesting that NLRP12 works as an inhibitor of Th17 cell differentiation. Indeed, Th17 cell differentiation markedly increases in Nlrp12-/- T cells cultured under the Th17-skewing condition. Mechanistically, we found that NLRP12 negatively regulates IL-6-induced phosphorylation of STAT3 in T cells. Finally, pharmacological inhibition of STAT3 reduced Th17 cell differentiation and abrogated hyperinflammatory arthritis observed in Nlrp12-/- mice. Thus, we described a novel role for NLRP12 as a checkpoint inhibitor of Th17 cell differentiation, which controls the severity of experimental arthritis.


Subject(s)
Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Cell Differentiation/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Th17 Cells/metabolism , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Inflammation/metabolism , Inflammation/pathology , Interleukin-17/metabolism , Joints/metabolism , Joints/pathology , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/physiology , STAT3 Transcription Factor/metabolism , Th17 Cells/pathology
3.
J Invest Dermatol ; 144(4): 844-854.e2, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37832844

ABSTRACT

Psoriasis is an inflammatory skin disorder that is characterized by keratinocyte hyperproliferation in response to immune cell infiltration and cytokine secretion in the dermis. γδ T cells expressing the Vγ4 TCR chain are among the highest contributors of IL-17A, which is a major cytokine that drives a psoriasis flare, making Vγ4+ γδ T cells a suitable target to restrict psoriasis progression. In this study, we demonstrate that mitochondrial translation inhibition within Vγ4+ γδ T cells effectively reduced erythema, scaling, and skin thickening in a murine model of psoriatic disease. The antibiotic linezolid, which blocks mitochondrial translation, inhibited the production of mitochondrial-encoded protein cytochrome c oxidase in Vγ4+ γδ T cells and systemically reduced the frequencies of IL-17A+ Vγ4+ γδ T cells, effectively resolving IL-17A-dependent inflammation. Inhibiting mitochondrial translation could be a novel metabolic approach to interrupt IL-17A signaling in Vγ4+ T cells and reduce psoriasis-like skin pathophysiology.


Subject(s)
Dermatitis , Psoriasis , Mice , Animals , Imiquimod/adverse effects , Interleukin-17/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin , T-Lymphocytes , Inflammation/metabolism , Cytokines/metabolism , Disease Models, Animal , Receptors, Antigen, T-Cell, gamma-delta/metabolism
4.
Int Immunopharmacol ; 124(Pt B): 111007, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778170

ABSTRACT

The STING signaling pathway has gained attention over the last few years due to its ability to incite antimicrobial and antitumoral immunity. Conversely, in mouse models of autoimmunity such as colitis and multiple sclerosis, where TH17 cells are implicated in tissue inflammation, STING activation has been associated with the attenuation of immunogenic responses. In this line, STING was found to limit murine TH17 pro-inflammatory program in vitro. Here we demonstrate that 2'3'-c-di-AM(PS)2(Rp,Rp), a STING agonist that has been undergoing clinical trials for antitumor immunotherapy, activates the STING signalosome in differentiating human TH17 cells. Of particular interest, 2'3'-c-di-AM(PS)2(Rp,Rp) reduces IL-17A production and IL23R expression by human TH17 cells while it favors the generation of regulatory T (Treg) cells. These findings suggest that STING agonists may be promising approaches for treating human TH17-mediated chronic inflammation.


Subject(s)
Colitis , Inflammation , Humans , Mice , Animals , Inflammation/metabolism , Signal Transduction , Colitis/pathology , Disease Models, Animal , Th17 Cells
5.
Nat Commun ; 14(1): 4280, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460614

ABSTRACT

Neutrophils rely predominantly on glycolytic metabolism for their biological functions, including reactive oxygen species (ROS) production. Although pyruvate kinase M2 (PKM2) is a glycolytic enzyme known to be involved in metabolic reprogramming and gene transcription in many immune cell types, its role in neutrophils remains poorly understood. Here, we report that PKM2 regulates ROS production and microbial killing by neutrophils. Zymosan-activated neutrophils showed increased cytoplasmic expression of PKM2. Pharmacological inhibition or genetic deficiency of PKM2 in neutrophils reduced ROS production and Staphylococcus aureus killing in vitro. In addition, this also resulted in phosphoenolpyruvate (PEP) accumulation and decreased dihydroxyacetone phosphate (DHAP) production, which is required for de novo synthesis of diacylglycerol (DAG) from glycolysis. In vivo, PKM2 deficiency in myeloid cells impaired the control of infection with Staphylococcus aureus. Our results fill the gap in the current knowledge of the importance of lower glycolysis for ROS production in neutrophils, highlighting the role of PKM2 in regulating the DHAP and DAG synthesis to promote ROS production in neutrophils.


Subject(s)
Neutrophils , Pyruvate Kinase , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Reactive Oxygen Species/metabolism , Neutrophils/metabolism , Phosphorylation , Glycolysis
6.
Cell Rep ; 39(8): 110838, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35613599

ABSTRACT

External and intrinsic factors regulate the transcriptional profile of T helper 17 (TH17) cells, thereby affecting their pathogenic potential and revealing their context-dependent plasticity. The stimulator of interferon genes (STING), a component of the intracellular DNA-sensing pathway, triggers immune responses but remains largely unexplored in T cells. Here, we describe an intrinsic role of STING in limiting the TH17 cell pathogenic program. We demonstrate that non-pathogenic TH17 cells express higher levels of STING than those activated under pathogenic conditions. Activation of STING induces interleukin-10 (IL-10) production in TH17 cells, decreasing IL-17A and IL-23R expression in a type I interferon (IFN)-independent manner. Mechanistically, STING-induced IL-10 production partially requires aryl hydrocarbon receptor (AhR) signaling, while the decrease of IL-17A expression occurs due to a reduction of Rorγt transcriptional activity. Our findings reveal a regulatory function of STING in the TH17 cell activation program, proposing it as a valuable target to limit TH17-cell-mediated inflammation.


Subject(s)
Interleukin-10 , Interleukin-17 , Cells, Cultured , Interleukin-10/metabolism , Interleukin-17/metabolism , Signal Transduction , Th17 Cells
7.
Eur J Pharmacol ; 929: 175127, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35787889

ABSTRACT

T helper 17 (Th17) lymphocytes play a critical role in the pathogenesis of autoimmune diseases, mainly by producing the pro-inflammatory cytokine interleukin-17 (IL-17). Therefore, Th17 lymphocytes have been considered a strategic target for drug discovery and development. In this study, we investigated the activity and possible mechanisms of action of a 4-phenyl coumarin isolated from propolis, named cinnamoyloxy-mammeisin (CNM), in Th17 cell differentiation and the development of experimental Th17-dependent autoimmune encephalomyelitis (EAE). Our data showed that in vitro Th17 cell differentiation was attenuated by CNM treatment in a concentration-dependent manner (1, 3, and 10 µM). This was associated with a reduction in the release of IL-17 (35% inhibition) and interleukin-22 (IL-22, 51% inhibition). Th17-differentiated cells exposed to CNM also downregulated the expression of Th17 hallmarked cell genes, such as RAR-related orphan receptor c (Rorc, 51% inhibition), and interleukin-23 receptor (Il23r, 64% inhibition), indicating possible upstream molecular mechanisms. Mechanistically, CNM significantly reduced the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) during in vitro Th17 cell differentiation. In vivo treatment with CNM (100 µg/kg) reduced the clinical signs of EAE, which was associated with a reduction in Central Nervous System demyelination, neuroinflammation, and Th17 response in the spinal cord and inguinal lymph nodes. Consistent with this, CNM also effectively attenuated human Th17 differentiation in vitro. Collectively, our results highlight the potential of CNM as a new molecule that can modulate Th17 cells via inhibition of STAT3 signaling and, as a result, reduce autoimmune inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Propolis , Animals , Cell Differentiation , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Inflammation/drug therapy , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Propolis/chemistry , Propolis/metabolism , Propolis/pharmacology , STAT3 Transcription Factor/metabolism , Th17 Cells
8.
J Exp Med ; 217(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32697823

ABSTRACT

Th17 cell differentiation and pathogenicity depend on metabolic reprogramming inducing shifts toward glycolysis. Here, we show that the pyruvate kinase M2 (PKM2), a glycolytic enzyme required for cancer cell proliferation and tumor progression, is a key factor mediating Th17 cell differentiation and autoimmune inflammation. We found that PKM2 is highly expressed throughout the differentiation of Th17 cells in vitro and during experimental autoimmune encephalomyelitis (EAE) development. Strikingly, PKM2 is not required for the metabolic reprogramming and proliferative capacity of Th17 cells. However, T cell-specific PKM2 deletion impairs Th17 cell differentiation and ameliorates symptoms of EAE by decreasing Th17 cell-mediated inflammation and demyelination. Mechanistically, PKM2 translocates into the nucleus and interacts with STAT3, enhancing its activation and thereby increasing Th17 cell differentiation. Thus, PKM2 acts as a critical nonmetabolic regulator that fine-tunes Th17 cell differentiation and function in autoimmune-mediated inflammation.


Subject(s)
Autoimmunity/physiology , Inflammation/metabolism , Pyruvate Kinase/physiology , STAT3 Transcription Factor/metabolism , Th17 Cells/physiology , Animals , Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Inbred C57BL , Pyruvate Kinase/metabolism , Real-Time Polymerase Chain Reaction , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL