Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38134932

ABSTRACT

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Subject(s)
Dermatitis, Atopic , Immunity, Innate , Lung , Sensory Receptor Cells , Animals , Humans , Mice , Cytokines , Dermatitis, Atopic/immunology , Inflammation , Lung/immunology , Lymphocytes , Sensory Receptor Cells/enzymology
2.
Development ; 151(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38456551

ABSTRACT

Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs ß- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.


Subject(s)
Cadherins , Stem Cell Niche , Stem Cell Niche/genetics , Cadherins/genetics , Cadherins/metabolism , Muscle Fibers, Skeletal/metabolism , Signal Transduction , Catenins/genetics , Catenins/metabolism , Muscle, Skeletal/metabolism , Cell Adhesion/genetics
3.
Genome Biol Evol ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38771124

ABSTRACT

Lengths of telomeres vary by an order of magnitude across mammalian species. Similarly, age- and sex-standardized telomere lengths differ by up to 1 kb (14%) across human populations. How to explain these differences? Telomeres play a central role in senescence and aging, and genes that affect telomere length are likely under weak selection (i.e. telomere length is a trait that is subject to nearly neutral evolution). Importantly, natural selection is more effective in large populations than in small populations. Here, we propose that observed differences in telomere length across species and populations are largely due to differences in effective population sizes. In this perspective, we present preliminary evolutionary genetic evidence supporting this hypothesis and highlight the need for more data.


Subject(s)
Population Density , Selection, Genetic , Telomere , Humans , Telomere/genetics , Animals , Evolution, Molecular , Telomere Homeostasis , Biological Evolution , Aging/genetics
SELECTION OF CITATIONS
SEARCH DETAIL