Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 18(1): e1009996, 2022 01.
Article in English | MEDLINE | ID: mdl-35030162

ABSTRACT

There is a growing need to develop novel therapeutics for targeted treatment of cancer. The prerequisite to success is the knowledge about which types of molecular alterations are predominantly driving tumorigenesis. To shed light onto this subject, we have utilized the largest database of human cancer mutations-TCGA PanCanAtlas, multiple established algorithms for cancer driver prediction (2020plus, CHASMplus, CompositeDriver, dNdScv, DriverNet, HotMAPS, OncodriveCLUSTL, OncodriveFML) and developed four novel computational pipelines: SNADRIF (Single Nucleotide Alteration DRIver Finder), GECNAV (Gene Expression-based Copy Number Alteration Validator), ANDRIF (ANeuploidy DRIver Finder) and PALDRIC (PAtient-Level DRIver Classifier). A unified workflow integrating all these pipelines, algorithms and datasets at cohort and patient levels was created. We have found that there are on average 12 driver events per tumour, of which 0.6 are single nucleotide alterations (SNAs) in oncogenes, 1.5 are amplifications of oncogenes, 1.2 are SNAs in tumour suppressors, 2.1 are deletions of tumour suppressors, 1.5 are driver chromosome losses, 1 is a driver chromosome gain, 2 are driver chromosome arm losses, and 1.5 are driver chromosome arm gains. The average number of driver events per tumour increases with age (from 7 to 15) and cancer stage (from 10 to 15) and varies strongly between cancer types (from 1 to 24). Patients with 1 and 7 driver events per tumour are the most frequent, and there are very few patients with more than 40 events. In tumours having only one driver event, this event is most often an SNA in an oncogene. However, with increasing number of driver events per tumour, the contribution of SNAs decreases, whereas the contribution of copy-number alterations and aneuploidy events increases.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Mutation , Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Algorithms , Biomarkers, Tumor/genetics , Databases, Genetic , Female , Humans , Male , Middle Aged , Precision Medicine , Young Adult
2.
Encephale ; 50(2): 137-142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37005193

ABSTRACT

INTRODUCTION: Dopamine (DA) is likely to be involved in some depressive dimensions, such as anhedonia and amotivation, which account for a part of treatment-resistant forms. Monoamine oxidase inhibitors (MAOI) and direct D2 and D3 receptors agonists (D2/3r-dAG) are known to help, but we lack safety data about their combined usage. We report on safety and tolerance of the MAOI+D2r-dAG combination in a clinical series. METHOD: All patients referred to our recourse center for depression between 2013 and 2021 were screened to select those who did receive the combo. Data were extracted from clinical files. RESULTS: Sixteen patients of 60±17 years of age (8 women, 7 with age>65years, all suffered from treatment resistant depression, 7 with bipolar disorder) received the combo. There were no life-threatening adverse effects (AE). However, AE were reported by 14 patients (88%) most of which were mild and consisted of insomnia, nausea, nervousness, confusion, impulse control disorder and/or "sleep attacks". One patient presented a serious AE requiring a short hospitalization for confusion. Intolerance led to failure to introduce treatment in two patients (13%). The retrospective non-interventional design, the variety of molecules, and the modest sample size limited the scope of these results. CONCLUSION: There was no life-threatening safety issue in combining MAOI and D2/3r-dAG, especially regarding cardiovascular side effects. The systematic screening of AE might account for their frequency, but these precluded the treatment in only two patients. Comparative studies are needed to assess the efficacy of this new combination.


Subject(s)
Bipolar Disorder , Monoamine Oxidase Inhibitors , Humans , Female , Aged , Monoamine Oxidase Inhibitors/adverse effects , Dopamine Agonists/adverse effects , Depression , Retrospective Studies , Bipolar Disorder/drug therapy , Bipolar Disorder/chemically induced
3.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142768

ABSTRACT

A (series) range of potential dimorpholinoquinazoline-based inhibitors of the PI3K/Akt/mTOR cascade was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound 7c with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins. Compound 7c inhibited the phosphorylation of Akt, mTOR, and S6K at 125-250 nM. It also triggered PARP1 cleavage, ROS production, and cell death via several mechanisms. Inhibition of PI3Kα was observed at a concentration of 7b 50 µM and of 7c 500 µM and higher, that can indicate minority PI3Kα as a target among other kinases in the titled cascade for 7c. In vivo studies demonstrated an inhibition of tumor growth in the colorectal tumor model. According to the docking studies, the replacement of the triazine core in gedatolisib (8) by a quinazoline fragment, and incorporation of a (hetero)aromatic unit connected with the carbamide group via a flexible spacer, can result in more selective inhibition of the PI3Kα isoform.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Cell Line, Tumor , Cell Proliferation , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Quinazolines/pharmacology , Reactive Oxygen Species , TOR Serine-Threonine Kinases/metabolism , Triazines/pharmacology , Urea
4.
Molecules ; 27(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36557921

ABSTRACT

Xanthine derivatives have been a great area of interest for the development of potent bioactive agents. Thirty-eight methylxanthine derivatives as acetylcholinesterase inhibitors (AChE) were designed and synthesized. Suzuki-Miyaura cross-coupling reactions of 8-chlorocaffeine with aryl(hetaryl)boronic acids, the CuAAC reaction of 8-ethynylcaffeine with several azides, and the copper(I) catalyzed one-pot three-component reaction (A3-coupling) of 8-ethynylcaffeine, 1-(prop-2-ynyl)-, or 7-(prop-2-ynyl)-dimethylxanthines with formaldehyde and secondary amines were the main approaches for the synthesis of substituted methylxanthine derivatives (yield 53-96%). The bioactivity of all new compounds was evaluated by Ellman's method, and the results showed that most of the synthesized compounds displayed good and moderate acetylcholinesterase (AChE) inhibitory activities in vitro. The structure-activity relationships were also discussed. The data revealed that compounds 53, 59, 65, 66, and 69 exhibited the most potent inhibitory activity against AChE with IC50 of 0.25, 0.552, 0.089, 0.746, and 0.121 µM, respectively. The binding conformation and simultaneous interaction modes were further clarified by molecular docking studies.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Xanthines/pharmacology , Structure-Activity Relationship , Molecular Structure
5.
Org Biomol Chem ; 19(47): 10432-10443, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34846407

ABSTRACT

An effective method for the synthesis of 8-aryl-4,5-dihydrothiazolo[4',5':3,4]benzo[1,2-c]isoxazol-2-amines was developed. This method includes the α-keto bromination of 3-aryl-6,7-dihydrobenzo[c]isoxazol-4(5H)-ones followed by the condensation of the obtained bromo derivatives with thiourea in acetonitrile. Using virtual screening, a series of acylated derivatives of the obtained compounds were selected as potential HSP90 inhibitors. These compounds were prepared and evaluated as antiproliferative agents against three cancer cell lines (A431, 22Rv1, and MCF-7). Compounds 8b, 8c and 8q exhibiting high antiproliferative potency against MCF-7 breast cancer cells with IC50 values ranging from 2.3 to 9.5 µM were chosen for in-depth evaluation. The selected compounds had remarkable effects on HSP90 client proteins, including steroid hormone receptors and the anti-apoptotic factor BCL2. The obtained compounds are of interest for anticancer drug development.


Subject(s)
Thiazoles
6.
Mol Biol Rep ; 48(5): 4549-4561, 2021 May.
Article in English | MEDLINE | ID: mdl-34129187

ABSTRACT

Insect odorant receptors (ORs) have been suggested to function as ligand-gated cation channels, with OrX/Orco heteromers combining ionotropic and metabotropic activity. The latter is mediated by different G proteins and results in Orco self-activation by cyclic nucleotide binding. In this contribution, we co-express the odor-specific subunits DmOr49b and DmOr59b with either wild-type Orco or an Orco-PKC mutant lacking cAMP activation heterologously in mammalian cells. We show that the characteristics of heteromers strongly depend on both the OrX type and the coreceptor variant. Thus, methyl acetate-sensitive Or59b/Orco demonstrated 25-fold faster response kinetics over o-cresol-specific Or49b/Orco, while the latter required a 10-100 times lower ligand concentration to evoke a similar electrical response. Compared to wild-type Orco, Orco-PKC decreased odorant sensitivity in both heteromers, and blocked an outward current rectification intrinsic to the Or49b/Orco pair. Our observations thus provide an insight into insect OrX/Orco functioning, highlighting their natural and artificial tuning features and laying the groundwork for their application in chemogenetics, drug screening, and repellent design.


Subject(s)
Drosophila Proteins/genetics , Ligand-Gated Ion Channels/genetics , Receptors, Odorant/genetics , Acetates/chemistry , Acetates/pharmacology , Animals , Cresols/chemistry , Cresols/pharmacology , Cyclic AMP/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , GTP-Binding Proteins/genetics , Kinetics , Odorants/analysis , Signal Transduction/drug effects
7.
Molecules ; 26(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34771077

ABSTRACT

Hormone therapy is one of the most effective breast cancer treatments, however, its application is limited by the progression of hormonal resistance, both primary or acquired. The development of hormonal resistance is caused either by an irreversible block of hormonal signalling (suppression of the activity or synthesis of hormone receptors), or by activation of oestrogen-independent signalling pathways. Recently the effect of exosome-mediated intercellular transfer of hormonal resistance was revealed, however, the molecular mechanism of this effect is still unknown. Here, the role of exosomal miRNAs (microRNAs) in the transferring of hormonal resistance in breast cancer cells has been studied. The methods used in the work include extraction, purification and RNAseq of miRNAs, transfection of miRNA mimetics, immunoblotting, reporter analysis and the MTT test. Using MCF7 breast cancer cells and MCF7/T tamoxifen-resistant sub-line, we have found that some miRNAs, suppressors of oestrogen receptor signalling, are overexpressed in the exosomes of the resistant breast cancer cells. The multiple (but not single) transfection of one of the identified miRNA, miR-181a-2, into oestrogen-dependent MCF7 cells induced the irreversible tamoxifen resistance associated with the continuous block of the oestrogen receptor signalling and the activation of PI3K/Akt pathway. We suppose that the miRNAs-ERα suppressors may act as trigger agents inducing the block of oestrogen receptor signalling and breast cancer cell transition to an aggressive oestrogen-independent state.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/antagonists & inhibitors , Exosomes/drug effects , MicroRNAs/antagonists & inhibitors , Tamoxifen/pharmacology , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Exosomes/genetics , Exosomes/metabolism , Female , Humans , MCF-7 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/drug effects
8.
Molecules ; 26(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33922925

ABSTRACT

Exosomes are the small vesicles that are secreted by different types of normal and tumour cells and can incorporate and transfer their cargo to the recipient cells. The main goal of the present work was to study the tumour exosomes' ability to accumulate the parent mutant DNA or RNA transcripts with their following transfer to the surrounding cells. The experiments were performed on the MCF7 breast cancer cells that are characterized by the unique coding mutation in the PIK3CA gene. Using two independent methods, Sanger sequencing and allele-specific real-time PCR, we revealed the presence of the fragments of the mutant DNA and RNA transcripts in the exosomes secreted by the MCF7 cells. Furthermore, we demonstrated the MCF7 exosomes' ability to incorporate into the heterologous MDA-MB-231 breast cancer cells supporting the possible transferring of the exosomal cargo into the recipient cells. Sanger sequencing of the DNA from MDA-MB-231 cells (originally bearing a wild type of PIK3CA) treated with MCF7 exosomes showed no detectable amount of mutant DNA or RNA; however, using allele-specific real-time PCR, we revealed a minor signal from amplification of a mutant allele, showing a slight increase of mutant DNA in the exosome-treated MDA-MB-231 cells. The results demonstrate the exosome-mediated secretion of the fragments of mutant DNA and mRNA by the cancer cells and the exosomes' ability to transfer their cargo into the heterologous cells.


Subject(s)
Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , DNA, Neoplasm/genetics , Exosomes/genetics , Alleles , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Mutation/genetics , RNA, Messenger/genetics
9.
Bioorg Chem ; 104: 104324, 2020 11.
Article in English | MEDLINE | ID: mdl-33142432

ABSTRACT

In this article, we describe the synthesis of 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides bearing cyclic diamine residues at positions 6 or 7; the synthesis is based on the nucleophilic substitution of halogens. All synthesized 6(7)-aminoquinoxaline-2-carbonitrile 1,4-dioxides 3-6 demonstrated higher cytotoxicity and hypoxia selectivity compared to the reference agent tirapazamine against breast adenocarcinoma cell lines (MCF7, MDA-MB-231). The structure and position of the diamine residue considerably affects the antiproliferative properties of the quinoxaline-2-carbonitrile 1,4-dioxides. The introduction of a halogen atom at position 7 in the quinoxaline ring of 4a considerably increases the cytotoxicity of compounds 5a and 6a under both normoxic and hypoxic conditions. However, the most hypoxia-selective derivatives were non-halogenated 7-aminosubstituted 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides 3a-j. Of the 32 novel synthesized derivatives, approximately 20 of the 6(7)-amino-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides demonstrated high antiproliferative potency against wild type leukemia cells K562 and drug-resistant subline K562/4 with the expression of p-glycoprotein (p-gp) compared to the reference agent doxorubicin, which exhibited one order of magnitude lower activity towards K562/4 cells than towards K562 cells. Lead compounds 5a and 3f inhibited HIF-1α expression and activity and induced apoptosis in hypoxic tumor cells, which was confirmed by poly(ADP-ribose)polymerase (PARP) cleavage. Moreover, 5a and 3f showed strong antiestrogenic potencies in MCF7 breast cancer cells. Thus, the described series of quinoxaline 1,4-dioxides has high anticancer potential and good aqueous solubility. Therefore, these compounds are promising for further drug development of hypoxia-targeted anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Hypoxia/drug effects , Drug Discovery , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Nitriles/pharmacology , Quinoxalines/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Receptors, Estrogen/metabolism , Structure-Activity Relationship
10.
Bioorg Chem ; 91: 103142, 2019 10.
Article in English | MEDLINE | ID: mdl-31400555

ABSTRACT

A flexible approach to previously unknown spirofused and linked 1,3,4-thiadiazine derivatives of steroids with selective control of heterocyclization patterns is disclosed. (N-Arylcarbamoyl)spiroandrostene-17,6' [1,3,4]thiadiazines and (N-arylcarbamoyl)17-[1',3',4']thiadiazine-substituted androstenes, novel types of heterosteroids, were prepared from 16ß,17ß-epoxypregnenolone and 21-bromopregna-5,16-dien-20-one in good to high yields by the treatment with oxamic acid thiohydrazides. The synthesized compounds were screened for antiproliferative activity against the human androgen receptor-positive prostate cancer cell line 22Rv1. Most of (N-arylcarbamoyl)17-[1',3',4']thiadiazine-substituted androstenes exhibit better antiproliferative potency (IC50 = 2.1-6.6 µM) than the antiandrogen bicalutamide. Compounds 7d with IC50 = 3.0 µM and 7j with IC50 = 2.1 µM proved to be the most active in the series under study. Lead synthesized compound 7j downregulates AR expression and activity in 22Rv1 cells. NF-κB activity is also blocked in 7j-treated 22Rv1 cells. Apoptosis is considered as a possible mechanism of 7j-induced cell death.


Subject(s)
Androgen Antagonists/chemical synthesis , Androgen Antagonists/pharmacology , Androstadienes/chemical synthesis , Androstadienes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/chemistry , Thiadiazines/chemistry , Cell Proliferation , Humans , Male , NF-kappa B/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tumor Cells, Cultured
11.
J Antimicrob Chemother ; 72(7): 1901-1906, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28387862

ABSTRACT

Objectives: To study the isolates with acquired resistance to bedaquiline and linezolid that were obtained from patients enrolled in a clinical study of a novel therapy regimen for drug-resistant TB in Moscow, Russia. Methods: Linezolid resistance was detected using MGIT 960 with a critical concentration of 1 mg/L. The MIC of bedaquiline was determined using the proportion method. To identify genetic determinants of resistance, sequencing of the mmpR ( Rv0678 ), atpE , atpC , pepQ , Rv1979c , rrl , rplC and rplD loci was performed. Results: A total of 85 isolates from 27 patients with acquired resistance to linezolid and reduced susceptibility to bedaquiline (MIC ≥0.06 mg/L) were tested. Most mutations associated with a high MIC of bedaquiline were found in the mmpR gene. We identified for the first time two patients whose clinical isolates had substitutions D28N and A63V in AtpE, which had previously been found only in in vitro -selected strains. Several patients had isolates with elevated MICs of bedaquiline prior to treatment; four of them also bore mutations in mmpR , indicating the presence of some hidden factors in bedaquiline resistance acquisition. The C154R substitution in ribosomal protein L3 was the most frequent in the linezolid-resistant strains. Mutations in the 23S rRNA gene (g2294a and g2814t) associated with linezolid resistance were also found in two isolates. Heteroresistance was identified in ∼40% of samples, which reflects the complex nature of resistance acquisition. Conclusions: The introduction of novel drugs into treatment must be accompanied by continuous phenotypic susceptibility testing and the analysis of genetic determinants of resistance.


Subject(s)
Antitubercular Agents/pharmacology , Diarylquinolines/pharmacology , Linezolid/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/microbiology , Acetamides/therapeutic use , Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Moscow/epidemiology , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Oxazolidinones/therapeutic use , Prospective Studies , Ribosomal Protein L3 , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology
12.
J Antimicrob Chemother ; 71(6): 1520-31, 2016 06.
Article in English | MEDLINE | ID: mdl-26929267

ABSTRACT

BACKGROUND: Nucleic acid amplification tests are widely used in TB diagnostics. Priority tasks in their development consist of increasing the specificity and sensitivity of the detection of resistance to a wide spectrum of anti-TB drugs. METHODS: We developed a multiplexed assay allowing the detection of 116 drug resistance-determining mutations in the rpoB, katG, inhA, ahpC, gyrA, gyrB, rrs, eis and embB genes in the Mycobacterium tuberculosis complex genome and six SNPs to identify the main lineages circulating in Russia. The assay is based on the amplification of 17 fragments of the genome using the universal primer adapter technique and heat pulses at the elongation step, followed by hybridization on a microarray. RESULTS: The method was evaluated using 264 pairs of clinical samples and corresponding isolates. A significant proportion (25%) of smear-negative samples were correctly analysed by microarray analysis in addition to 96% of smear-positive samples. The sensitivity and specificity of the assay exceeded 90% for rifampicin, isoniazid, ofloxacin and second-line injection drugs. In agreement with previous studies, the specificity of ethambutol resistance was as low as 57%, while the sensitivity was 89.9%. Strong association of the Beijing lineage with a resistant phenotype was observed. Euro-American lineage strains, excluding Ural and LAM, were predominantly associated with the susceptible phenotype. CONCLUSIONS: The developed test has a high sensitivity and specificity and can be directly applied to clinical samples. The combination of mutation-based drug resistance profiling and basic genotyping could be useful for clinical microbiology studies and epidemiological surveillance of the M. tuberculosis complex.


Subject(s)
Genotyping Techniques/methods , Microarray Analysis/methods , Microbial Sensitivity Tests/methods , Molecular Diagnostic Techniques/methods , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/diagnosis , Drug Resistance, Bacterial , Genes, Bacterial , Genotype , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Mutation , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , Russia , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant/microbiology
13.
IUBMB Life ; 68(4): 281-92, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26892736

ABSTRACT

Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the constitutive activation of Akt/Snail1/E-cadherin signaling that opens new perspectives to overcome the metformin/tamoxifen resistance of breast cancer.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Tamoxifen/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
14.
J Clin Microbiol ; 53(4): 1103-14, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25609722

ABSTRACT

In addition to the obligatory pathogenic species of the Mycobacterium tuberculosis complex and Mycobacterium leprae, the genus Mycobacterium also includes conditionally pathogenic species that in rare cases can lead to the development of nontuberculous mycobacterial diseases. Because tuberculosis and mycobacteriosis have similar clinical signs, the accurate identification of the causative agent in a clinical microbiology laboratory is important for diagnostic verification and appropriate treatment. This report describes a low-density hydrogel-based microarray containing oligonucleotide probes based on the species-specific sequences of the gyrB gene fragment for mycobacterial species identification. The procedure included the amplification of a 352-nucleotide fragment of the gene and its hybridization on a microarray. The triple-species-specific probe design and the algorithm for hybridization profile recognition based on the calculation of Pearson correlation coefficients, followed by the construction of a profile database, allowed for the reliable and accurate identification of mycobacterial species, including mixed-DNA samples. The assay was used to evaluate 543 clinical isolates from two regions of Russia, demonstrating its ability to detect 35 mycobacterial species, with 99.8% sensitivity and 100% specificity when using gyrB, 16S, and internal transcribed spacer (ITS) fragment sequencing as the standard. The testing of clinical samples showed that the sensitivity of the assay was 89% to 95% for smear-positive samples and 36% for smear-negative samples. The large number of identified species, the high level of sensitivity, the ability to detect mycobacteria in clinical samples, and the up-to-date profile database make the assay suitable for use in routine laboratory practice.


Subject(s)
Molecular Typing/methods , Mycobacterium Infections/diagnosis , Mycobacterium Infections/microbiology , Mycobacterium/genetics , Oligonucleotide Array Sequence Analysis/methods , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Nucleic Acid Hybridization , Polymerase Chain Reaction
15.
Exp Cell Res ; 319(20): 3150-9, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-23973669

ABSTRACT

The tolerance of cancer cells to hypoxia depends on the combination of different factors--from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial-mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O2 atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK - the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well the level of AMPK phosphorylation may be considered as predictors of the tumor sensitivity to anti-angiogenic drugs.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Hypoxia/metabolism , Signal Transduction , Transcription Factors/metabolism , beta Catenin/metabolism , Cells, Cultured , Female , Humans , MCF-7 Cells , Snail Family Transcription Factors
16.
J Steroid Biochem Mol Biol ; 244: 106597, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39127416

ABSTRACT

This research aimed to develop novel selective secosteroids that are highly active against hormone-dependent breast cancer. A simple and convenient approach to N'-acylated 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides was disclosed and these novel types of secosteroids were screened for cytotoxicity against the hormone-dependent human breast cancer cell line MCF7. Most secosteroid N'-benzoyl hydrazides have demonstrated high cytotoxicity against MCF7 cells with IC50 values below 5 µM, which are superior to that of the reference drug cisplatin. Hit compounds 2c, 2e and 2i were characterized by high cytotoxicity (IC50 = 1.6-1.9 µM) and very good selectivity towards MCF7 breast cancer cells. The lead secosteroids 2c, 2e and 2i also exhibit antiestrogenic effects and alter the expression of cell cycle regulating proteins. The effect of selected compounds on PARP (poly(ADP-ribose) polymerase) and Bcl-2 (B-cell CLL/lymphoma 2) indicates their proapoptotic potential. The synthesized secosteroids may be considered as new promising anti-breast cancer agents targeting ERα and apoptosis pathways.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Hydrazines , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Hydrazines/pharmacology , Hydrazines/chemistry , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Apoptosis/drug effects , Cell Proliferation/drug effects , Steroids/pharmacology , Steroids/chemistry , Drug Screening Assays, Antitumor
17.
Biomed Rep ; 20(3): 42, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343657

ABSTRACT

Combining chemotherapy and hormone therapy is a prevalent approach in breast cancer treatment. While the cytotoxic impact of numerous chemotherapy drugs stems from DNA damage, the exact role of these DNA alterations in modulating estrogen receptor α (ERα) machinery remains elusive. The present study aimed to analyze the impact of DNA damage agents on ERα signaling in breast cancer cells and assess the signaling pathways mediating the influence of DNA damage drugs on the ERα machinery. Cell viability was assessed using the MTT method, while the expression of signaling proteins was analyzed by immunoblotting. ERα activity in the cells treated with various drugs (17ß-estradiol, tamoxifen, 5-fluorouracil) was assessed through reporter gene assays. In vitro experiments were conducted on MCF7 breast cancer cells subjected to varying durations of 5-fluorouracil (5-FU) treatment. Two distinct cell responses to 5-FU were identified based on the duration of the treatment. A singular dose of 5-FU induces pronounced DNA fragmentation, temporally suppressing ERα signaling while concurrently activating AKT phosphorylation. This suppression reverses upon 5-FU withdrawal, restoring normalcy within ten days. However, chronic 5-FU treatment led to the emergence of 5-FU-resistant cells with irreversible alterations in ERα signaling, resulting in partial hormonal resistance. These changes mirror those observed in cells subjected to UV-induced DNA damage, underscoring the pivotal role of DNA damage in shaping estrogen signaling alterations in breast cancer cells. In summary, the results of the present study suggested that the administration of DNA damage agents to cancer cells can trigger irreversible suppression of estrogen signaling, fostering the development of partial hormonal resistance. This outcome may ultimately impede the efficacy of combined or subsequent chemo- and hormone therapy strategies.

18.
Sci Rep ; 14(1): 524, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177202

ABSTRACT

The treatment of tuberculosis is still a challenging process due to the widespread of pathogen strains resistant to antibacterial drugs, as well as the undesirable effects of anti-tuberculosis therapy. Hence, the development of safe and effective new anti-antitubercular agents, in addition to suitable nanocarrier systems, has become of utmost importance and necessity. Our research aims to develop liposomal vesicles that contain newly synthesized compounds with antimycobacterial action. The compound being studied is a derivative of imidazo-tetrazine named 3-(3,5-dimethylpyrazole-1-yl)-6-(isopropylthio) imidazo [1,2-b] [1,2,4,5] tetrazine compound. Several factors that affect liposomal characteristics were studied. The maximum encapsulation efficiency was 53.62 ± 0.09. The selected liposomal formulation T8* possessed a mean particle size of about 205.3 ± 3.94 nm with PDI 0.282, and zeta potential was + 36.37 ± 0.49 mv. The results of the in vitro release study indicated that the solubility of compound I was increased by its incorporation in liposomes. The free compound and liposomal preparation showed antimycobacterial activity against Mycobacterium tuberculosis H37Rv (ATCC 27294) at MIC value 0.94-1.88 µg/ml. We predict that the liposomes may be a good candidate for delivering new antitubercular drugs.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Liposomes/pharmacology , Antitubercular Agents/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology , Microbial Sensitivity Tests
19.
BMC Infect Dis ; 13: 240, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23705640

ABSTRACT

BACKGROUND: The steady rise in the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) requires rapid and reliable methods to identify resistant strains. The current molecular methods to detect MTB resistance to second-line drugs either do not cover an extended spectrum of mutations to be identified or are not easily implemented in clinical laboratories. A rapid molecular technique for the detection of resistance to second-line drugs in M. tuberculosis has been developed using hybridisation analysis on microarrays. METHODS: The method allows the identification of mutations within the gyrA and gyrB genes responsible for fluoroquinolones resistance and mutations within the rrs gene and the eis promoter region associated with the resistance to injectable aminoglycosides and a cyclic peptide, capreomycin. The method was tested on 65 M. tuberculosis clinical isolates with different resistance spectra that were characterised by their resistance to ofloxacin, levofloxacin, moxifloxacin, kanamycin and capreomycin. Also, a total of 61 clinical specimens of various origin (e.g., sputum, bronchioalveolar lavage) were tested. RESULTS: The sensitivity and specificity of the method in the detection of resistance to fluoroquinolones were 98% and 100%, respectively, 97% and 94% for kanamycin, and 100% and 94% for capreomycin. The analytical sensitivity of the method was approximately 300 genome copies per assay. The diagnostic sensitivity of the assay ranging from 67% to 100%, depending on the smear grade, and the method is preferable for analysis of smear-positive specimens. CONCLUSIONS: The combined use of the developed microarray test and the previously described microarray-based test for the detection of rifampin and isoniazid resistance allows the simultaneous identification of the causative agents of MDR and XDR and the detection of their resistance profiles in a single day.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Oligonucleotide Array Sequence Analysis/methods , Tuberculosis, Multidrug-Resistant/microbiology , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , DNA Gyrase/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fluoroquinolones/pharmacology , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , Phenotype , Sensitivity and Specificity , Sputum/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis
20.
Res Pharm Sci ; 18(5): 580-591, 2023.
Article in English | MEDLINE | ID: mdl-37842518

ABSTRACT

Background and purpose: Primary and metastatic breast cancers still represent an unmet clinical need for improved chemotherapy and hormone therapy. Considerable attention has been paid to natural anticancer compounds, especially lignans. The study aimed to evaluate the activity of several lignans against breast cancer cells and assess the effect of leading lignans on signaling pathways in combination with metformin. Experimental approach: Human breast cancer cell lines MCF7 (hormone-dependent), MDA-MB-231, and SKBR3 (hormone-independent) were used. A hormone-resistant MCF7/hydroxytamoxifen (HT) subline was obtained by long-term cultivation of the MCF7 line with hydroxytamoxifen. Antiproliferative activity was assessed by the MTT test; the expression of signaling pathway proteins was evaluated by immunoblotting analysis. Findings/Results: We evaluated the antiproliferative activity of lignans in breast cancer cells with different levels of hormone dependence and determined the relevant IC50 values. Honokiol was chosen as the leading compound, and its IC50 ranged from 12 to 20 µM, whereas for other tested lignans, the IC50 exceeded 50 µM. The accumulation of cleaved PARP and a decrease in the expression of Bcl-2 and ERα in MCF7/HT were induced following the combination of honokiol with metformin. Conclusions and implications: Honokiol demonstrated significant antiproliferative activity against both hormone-dependent breast cancer cells and lines with primary and acquired hormone resistance. The combination of honokiol with metformin is considered an effective approach to induce death in hormone-resistant cells. Honokiol is of interest as a natural compound with antiproliferative activity against breast cancers, including resistant tumors.

SELECTION OF CITATIONS
SEARCH DETAIL