Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
Add more filters

Publication year range
1.
Physiol Rev ; 98(1): 477-504, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29351513

ABSTRACT

Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.


Subject(s)
Brain/immunology , Immune System/physiology , Animals , Depressive Disorder, Major/immunology , Hormones/physiology , Humans , Neoplasms/immunology
2.
Circ Res ; 133(1): 25-44, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37264926

ABSTRACT

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Atherosclerosis/metabolism , Inflammation , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
3.
Lancet Oncol ; 25(5): 658-667, 2024 May.
Article in English | MEDLINE | ID: mdl-38608693

ABSTRACT

BACKGROUND: Metastatic phaeochromocytomas and paragangliomas (MPPGs) are orphan diseases. Up to 50% of MPPGs are associated with germline pathogenic variants of the SDHB gene. These tumours and many non-familial MPPGs exhibit a phenotype that is characterised by abnormal angiogenesis. We aimed to assess the activity and safety of cabozantinib, an antiangiogenic multi-tyrosine kinase inhibitor, in patients with MPPGs. METHODS: The Natalie Trial is a single-arm, phase 2 clinical trial being conducted at The University of Texas MD Anderson Cancer Center (Houston, TX, USA). Patients aged 18 years or older with histologically confirmed, progressive, and unresectable MPPGs, with an Eastern Cooperative Oncology Group performance status of 0-2, were treated with oral cabozantinib 60 mg/day. The primary endpoint was the investigator-assessed overall response rate per the Response Evaluation Criteria in Solid Tumours version 1.1 criteria. All outcomes were assessed in all evaluable participants who received any amount of study treatment. The trial is registered with ClinicalTrials.gov (NCT02302833) and is active but not recruiting. FINDINGS: From March 10, 2015, to May 11, 2021, 17 patients (13 male participants and four female participants) were enrolled. The median follow-up was 25 months (IQR 18-49). The overall response rate was 25·0% (95% CI 7·3-52·4; four of 16 patients). Seven grade 3 adverse events were reported in six patients, including single cases of hand-and-foot syndrome, hypertension, rectal fistula, QT prolongation, and asymptomatic hypomagnesaemia, and two cases of asymptomatic elevations of amylase and lipase. There were no grade 4 adverse events and no patient died on-study. INTERPRETATION: Cabozantinib shows promising activity in patients with MPPGs. FUNDING: Team NAT Foundation, Margaret Cazalot, and Clarence P Cazalot.


Subject(s)
Adrenal Gland Neoplasms , Anilides , Paraganglioma , Pheochromocytoma , Pyridines , Humans , Pyridines/therapeutic use , Pyridines/adverse effects , Female , Male , Middle Aged , Anilides/therapeutic use , Anilides/adverse effects , Pheochromocytoma/drug therapy , Pheochromocytoma/pathology , Pheochromocytoma/genetics , Paraganglioma/drug therapy , Paraganglioma/pathology , Adult , Adrenal Gland Neoplasms/drug therapy , Adrenal Gland Neoplasms/secondary , Aged , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects
4.
Brain Behav Immun ; 117: 205-214, 2024 03.
Article in English | MEDLINE | ID: mdl-38244945

ABSTRACT

Although cancer and its therapy are well known to be associated with fatigue, the exact nature of cancer-related fatigue remains ill-defined. We previously reported that fatigue-like behavior induced independently by tumor growth and by the chemotherapeutic agent cisplatin is characterized by reduced voluntary wheel running and an intact motivation to expand effort for food rewards. The present set of experiments was initiated to characterize the functional consequences of fatigue induced by chemoradiotherapy in tumor-bearing mice and relate them to changes in the expression of genes coding for inflammation, mitochondria dynamics and metabolism. Two syngeneic murine models of cancer were selected for this purpose, a model of human papilloma virus-related head and neck cancer and a model of lung cancer. In both models, tumor-bearing mice were submitted to chemoradiotherapy to limit tumor progression. Two dimensions of fatigue were assessed, the physical dimension by changes in physical activity in mice trained to run in wheels and the motivational dimension by changes in the performance of mice trained to nose poke to obtain a food reward in a progressive ratio schedule of food reinforcement. Chemoradiotherapy reliably decreased wheel running activity but had no effect on performance in the progressive ratio in both murine models of cancer. These effects were the same for the two murine models of cancer and did not differ according to sex. Livers and brains were collected at the end of the experiments for qRT-PCR analysis of expression of genes coding for inflammation, mitochondria dynamics, and metabolism. The observed changes were mainly apparent in the liver and typical of activation of type I interferon and NF-κB-dependent signaling, with alterations in mitochondrial dynamics and a shift toward glycolysis. Although the importance of these alterations for the pathophysiology of cancer-related fatigue remains to be explored, the present findings indicate that fatigue brought on by cancer therapy in tumor-bearing mice is more physical than motivational.


Subject(s)
Head and Neck Neoplasms , Motor Activity , Humans , Animals , Mice , Brain/metabolism , Head and Neck Neoplasms/metabolism , Motivation , Inflammation/metabolism
5.
Brain Behav Immun ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670240

ABSTRACT

BACKGROUND: The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN) as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications. However, the anti-inflammatory effectiveness of electrical stimulation of the DMN (eDMNS) and the possible heart rate (HR) alterations associated with this approach have not been investigated. Here, we examined the effects of eDMNS on HR and cytokine levels in mice administered with lipopolysaccharide (LPS, endotoxin) and in mice subjected to cecal ligation and puncture (CLP) sepsis. METHODS: Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (500, 250 or 50 µA at 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 µA or 50 µA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24 h after CLP. CLP survival was monitored for 14 days. RESULTS: Either left or right eDMNS at 500 µA and 250 µA decreased HR, compared with baseline pre-stimulation. This effect was not observed at 50 µA. Left side eDMNS at 50 µA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and was not associated with serum corticosterone alterations. Right side eDMNS in endotoxemic mice suppressed serum TNF and increased serum IL-10 levels but had no effects on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. CONCLUSIONS: For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation. These eDMNS anti-inflammatory effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.

6.
Brain Behav Immun ; 108: 45-54, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36427806

ABSTRACT

Cancer-related fatigue is defined as a distressing persistent subjective sense of physical, emotional, and/or cognitive tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and that interferes with usual functioning. This form of fatigue is highly prevalent during cancer treatment and in some patients, it can persist for years after treatment has ended. An understanding of the mechanisms that drive cancer-related fatigue is still lacking, which hampers the identification of effective treatment options. Various chemotherapeutic agents including cisplatin are known to induce mitochondrial dysfunction and this effect is known to mediate chemotherapy-induced peripheral neuropathy and cognitive dysfunction. Mitochondrial dysfunction results in the release of mitokines that act locally and at distance to promote metabolic and behavioral adjustments to this form of cellular stress. One of these mitokines, growth differentiation factor 15 (GDF15) and its receptor, glial cell line-derived neurotrophic factor family receptor α-like (GFRAL), have received special attention in oncology as activation of GFRAL mediates the anorexic response that is responsible for cancer anorexia. The present study was initiated to determine whether GDF15 and GFRAL are involved in cisplatin-induced fatigue. We first tested the ability of cisplatin to increase circulating GDF15 in mice before assessing whether GDF15 can induce behavioral fatigue measured by decreased wheel running in healthy mice and increase behavioral fatigue induced by cisplatin. Mice administered a long acting form of GDF15, mGDF15-fc, decreased their voluntary wheel running activity. When the same treatment was administered to mice receiving cisplatin, it increased the amplitude and duration of cisplatin-induced decrease in wheel running. To determine whether endogenous GDF15 mediates the behavioral fatigue induced by cisplatin, we then administered a neutralizing monoclonal antibody to GFRAL to mice injected with cisplatin. The GFRAL neutralizing antibody mostly prevented cisplatin-induced decrease in wheel running and accelerated recovery. Taken together these findings demonstrate for the first time the role of the GDF15/GFRAL axis in cisplatin-induced behaviors and indicate that this axis could be a promising therapeutic target for the treatment of cancer-related fatigue.


Subject(s)
Antineoplastic Agents , Fatigue , Glial Cell Line-Derived Neurotrophic Factor Receptors , Growth Differentiation Factor 15 , Animals , Mice , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Growth Differentiation Factor 15/metabolism , Motor Activity , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Fatigue/chemically induced
7.
Brain Behav Immun ; 107: 319-329, 2023 01.
Article in English | MEDLINE | ID: mdl-36349643

ABSTRACT

Chronic restraint stress is known to cause significant alterations of mitochondrial biology. However, its effects on effort-based behavior and the sensitivity of these effects to treatments that restore mitochondrial function have not been assessed. Based on the hypothesis that the behavioral consequences of this stressor should be more severe for an energy demanding activity than for an energy procuring activity, we compared the effects of chronic restraint stress on the performance of male mice trained to use a running wheel or to nose poke for a food reward in an operant conditioning cage. In accordance with our hypothesis, we observed that exposure of mice to 2-hour daily restraint sessions for 14 to 16 days during the light phase of the cycle reliably decreased voluntary wheel running but had no effect on working for food in a fixed ratio 10 schedule of food reinforcement or in a progressive ratio schedule of food reinforcement. This dissociation between the two types of behavioral activities could reflect an adaptive response to the constraint imposed by chronic restraint stress on mitochondria function and its negative consequences on energy metabolism. To determine whether it is the case, we administered mesenchymal stem cells intranasally to chronically restrained mice to repair the putative mitochondrial dysfunction induced by chronic restraint stress. This intervention had no effect on wheel running deficits. Assessment of mitochondrial gene expression in the brain of mice submitted to chronic restraint stress revealed an increase in the expression of genes involved in mitochondrial biology that showed habituation with repetition of daily sessions of restraint stress. These original findings can be interpreted to indicate that chronic restraint stress induces behavioral and mitochondrial adjustments that contribute to metabolic adaptation to this stressor and maintain metabolic flexibility.


Subject(s)
Feeding Behavior , Mitochondria , Motivation , Motor Activity , Animals , Male , Mice , Mitochondria/metabolism , Restraint, Physical , Stress, Physiological
8.
Brain Behav Immun ; 111: 169-176, 2023 07.
Article in English | MEDLINE | ID: mdl-37076053

ABSTRACT

Cisplatin is a chemotherapeutic agent that is still commonly used to treat solid tumors. However, it has several toxic side effects due in large part to the mitochondrial damage that it induces. As this mitochondrial damage is likely to result in a decrease in the amount of metabolic energy that is available for behavioral activities, it is not surprising that fatigue develops in cancer patients treated with cisplatin. The present preclinical study was initiated to determine whether the detrimental effects of cisplatin were more pronounced on physical effort requiring a lot of energy versus effort that not only requires less energy but also procures energy in the form of food. For this purpose, mice were either trained to run in a wheel or to work for food in various schedules of food reinforcement before being treated with cisplatin. The experiments were carried out only in male mice as we had already reported that sex differences in cisplatin-induced neurotoxicities are minimal. Cisplatin was administered daily for one cycle of five days, or two cycles separated by a five-day rest. As observed in previous experiments, cisplatin drastically reduced voluntary wheel running. In contrast, when cisplatin was administered to food-restricted mice trained to work for a food reward in a progressive ratio schedule or in a fixed-interval schedule, it tended to increase the number of responses emitted to obtain the food rewards. This increase was not associated with any change in the temporal distribution of responses during the interval between two reinforcements in mice submitted to the fixed interval schedule of food reinforcement. When cisplatin was administered to food-restricted mice trained in an effort-based decision-making task in which they had to choose between working for a grain pellet with little effort and working for a preferred chocolate pellet with more effort, it decreased the total number of responses emitted to obtain food rewards. However, this effect was much less marked than the decrease in wheel running induced by cisplatin. The decrease in the effort invested in the procurement of food rewards was not associated with any change in the relative distribution of effort between low reward and high reward during the time course of the test session. These findings show that cisplatin decreases energy-consuming activities but not energy-procuring activities unless they require a choice between options differing in their cost-benefit ratio. Furthermore, they indicate that the physical dimension of fatigue is more likely to develop in cisplatin-treated individuals than the motivational dimension of fatigue.


Subject(s)
Cisplatin , Motor Activity , Mice , Male , Female , Animals , Cisplatin/pharmacology , Motor Activity/physiology , Reward , Motivation , Fatigue
9.
Brain Behav Immun ; 107: 296-304, 2023 01.
Article in English | MEDLINE | ID: mdl-36323360

ABSTRACT

Persistent fatigue is a debilitating side effect that impacts a significant proportion of cancer survivors for which there is not yet an FDA-approved treatment. While certainly a multi-factorial problem, persistent fatigue could be due, in part, to associations learned during treatment. Therefore, we sought to investigate the role of associative learning in the persistence of fatigue using a preclinical model of cancer survivorship. For this purpose, we used a murine model of human papilloma virus-related head and neck cancer paired with a curative regimen of cisplatin-based chemoradiation in male C57BL/6J mice. Fatigue-like behavior was assessed by measuring variations in voluntary wheel running using a longitudinal design. Treatment robustly decreased voluntary wheel running, and this effect persisted for more than a month posttreatment. However, when wheels were removed during treatment, to minimize treatment-related fatigue, mice showed a more rapid return to baseline running levels. We confirmed that the delayed recovery observed in mice with continual wheel access was not due to increased treatment-related toxicity, in fact running attenuated cisplatin-induced kidney toxicity. Finally, we demonstrated that re-exposure to a treatment-related olfactory cue acutely re-instated fatigue. These data provide the first demonstration that associative processes can modulate the persistence of cancer-related fatigue-like behavior.


Subject(s)
Cancer Survivors , Neoplasms , Humans , Male , Mice , Animals , Mice, Inbred C57BL , Motor Activity , Research
10.
Mol Psychiatry ; 27(2): 831-839, 2022 02.
Article in English | MEDLINE | ID: mdl-34716408

ABSTRACT

Behavioral conditioning and expectation can have profound impact on animal and human physiology. Placebo, administered under positive expectation in clinical trials, can have potent effects on disease pathology, obscuring active medications. Emerging evidence suggests placebo-responsive neurotransmitter systems (e.g., endogenous opioid) regulate immune function by manipulating inflammatory proteins including IL-18, a potent pro-inflammatory, nociceptive cytokine implicated in pathophysiology of various diseases. Validation that neuroimmune interactions involving brain µ-opioid receptor (MOR) activity and plasma IL-18 underlie placebo analgesic expectation could have widespread clinical applications. Unfortunately, current lack of mechanistic clarity obfuscates clinical translation. To elucidate neuroimmune interactions underlying placebo analgesia, we exposed 37 healthy human volunteers to a standardized pain challenge on each of 2 days within a Positron Emission Tomography (PET) neuroimaging paradigm using the MOR selective radiotracer, 11C-Carfentanil (CFN). Each day volunteers received an intervention (placebo under analgesic expectation or no treatment), completed PET scanning, and rated their pain experience. MOR BPND parametric maps were generated from PET scans using standard methods. Results showed placebo reduced plasma IL-18 during pain (W74 = -3.7, p < 0.001), the extent correlating with reduction in pain scores. Placebo reduction in IL-18 covaried with placebo-induced endogenous opioid release in the left nucleus accumbens (T148 = 3.33; puncorr < 0.001) and left amygdala (T148 = 3.30; puncorr < 0.001). These findings are consistent with a modulating effect of placebo (under analgesic expectation in humans) on a potent nociceptive, pro-inflammatory cytokine (IL-18) and underlying relationships with endogenous opioid activity, a neurotransmitter system critically involved in pain, stress, and mood regulation.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, mu , Analgesics , Analgesics, Opioid/metabolism , Brain/metabolism , Humans , Interleukin-18/metabolism , Neurotransmitter Agents/metabolism , Opioid Peptides/metabolism , Pain/metabolism , Positron-Emission Tomography/methods , Receptors, Opioid, mu/metabolism , Synaptic Transmission/physiology
11.
Brain Behav Immun ; 101: 136-145, 2022 03.
Article in English | MEDLINE | ID: mdl-34999196

ABSTRACT

Considerable data relate major depressive disorder (MDD) with aberrant immune system functioning. Pro-inflammatory cytokines facilitate metabolism of tryptophan along the kynurenine pathway (KP) putatively resulting in reduced neuroprotective and increased neurotoxic KP metabolites in MDD, in addition to modulating metabolic and immune function. This central nervous system hypothesis has, however, only been tested in the periphery. Here, we measured KP-metabolite levels in both plasma and cerebrospinal fluid (CSF) of depressed patients (n = 63/36 respectively) and healthy controls (n = 48/33). Further, we assessed the relation between KP abnormalities and brain-structure volumes, as well as body mass index (BMI), an index of metabolic disturbance associated with atypical depression. Plasma levels of picolinic acid (PIC), the kynurenic/quinolinic acid ratio (KYNA/QUIN), and PIC/QUIN were lower in MDD, but QUIN levels were increased. In the CSF, we found lower PIC in MDD. Confirming previous work, MDD patients had lower hippocampal, and amygdalar volumes. Hippocampal and amygdalar volumes were correlated positively with plasma KYNA/QUIN ratio in MDD patients. BMI was increased in the MDD group relative to the control group. Moreover, BMI was inversely correlated with plasma and CSF PIC and PIC/QUIN, and positively correlated with plasma QUIN levels in MDD. Our results partially confirm previous peripheral KP findings and extend them to the CSF in MDD. We present the novel finding that abnormalities in KP metabolites are related to metabolic disturbances in depression, but the relation between KP metabolites and depression-associated brain atrophy might not be as direct as previously hypothesized.


Subject(s)
Depressive Disorder, Major , Depression , Depressive Disorder, Major/metabolism , Humans , Kynurenic Acid/metabolism , Kynurenine/metabolism , Quinolinic Acid/metabolism
12.
Brain Behav Immun ; 98: 161-172, 2021 11.
Article in English | MEDLINE | ID: mdl-34418499

ABSTRACT

There is significant variability in the expression of cancer-related fatigue. Understanding the factors that account for this variation provide insight into the underlying mechanisms. One important, but often overlooked, variable is biological sex. While a few clinical studies have indicated that female patients report higher levels of fatigue, these studies are subject to potential socio-culture reporting biases. Only a limited number of preclinical studies have considered sex differences in animal model of fatigue and few have simultaneously considered both disease- and treatment-related factors. The present series of studies was initiated to address the current knowledge gap on the importance of sex differences in cancer-related fatigue. We selected a murine model of human papilloma virus-positive head and neck cancer based on heterotypic injection of the mEERL95 cell line that grows in both male and female mice and responds to a regimen of cisplatin plus irradiation. We also tested the impact of immunotherapy treatment targeting PD1. Voluntary wheel running was used to evaluate fatigue-like behavior. Male mice grew larger tumors than did female mice and showed more severe fatigue-like behavior. We confirmed that the tumor increased the expression of inflammatory cytokines in the liver, but no sex differences were observed. As a trend toward elevated Cd3 mRNA was observed in female mice, we tested the importance of T cells using female Rag2-/- mice. The Rag2-/- female mice had accelerated tumor growth and more severe fatigue-like behavior. In response to cisplatin alone non-tumor-bearing female mice showed a slower recovery of wheel running activity compared to males. However, in response to chemoradiation and anti-PD1 neutralizing antibody, tumor-bearing female mice showed a better tumor response to therapy than male mice, but no significant sex differences were observed for wheel running. These findings point to different mechanisms underlying tumor- and treatment-induced behavioral fatigue and indicate that the sex factor can intervene to modulate the expression of fatigue-like behavior in particular circumstances.


Subject(s)
Head and Neck Neoplasms , Motor Activity , Animals , Fatigue , Female , Humans , Immunity , Male , Mice , Mice, Inbred C57BL , Sex Characteristics
13.
Brain Behav Immun ; 97: 204-218, 2021 10.
Article in English | MEDLINE | ID: mdl-34333111

ABSTRACT

Gulf War Illness (GWI) is a chronic, multi-symptom disorder affecting approximately 30 percent of the nearly 700,000 Veterans of the 1991 Persian Gulf War. GWI-related chemical (GWIC) exposure promotes immune activation that correlates with cognitive impairment and other symptoms of GWI. However, the molecular mechanisms and signaling pathways linking GWIC to inflammation and neurological symptoms remain unclear. Here we show that acute exposure of murine macrophages to GWIC potentiates innate immune signaling and inflammatory cytokine production. Using an established mouse model of GWI, we report that neurobehavioral changes and neuroinflammation are attenuated in mice lacking the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) and NOD-, LRR- or pyrin domain-containing protein 3 (NLRP3) innate immune pathways. In addition, we report sex differences in response to GWIC, with female mice showing more pronounced cognitive impairment and hippocampal astrocyte hypertrophy. In contrast, male mice display a GWIC-dependent upregulation of proinflammatory cytokines in the plasma that is not present in female mice. Our results indicate that STING and NLRP3 are key mediators of the cognitive impairment and inflammation observed in GWI and provide important new information on sex differences in this model.


Subject(s)
Cognitive Dysfunction , Persian Gulf Syndrome , Animals , Female , Gulf War , Male , Mice , Mice, Inbred NOD , Neuroimmunomodulation
14.
Brain Behav Immun ; 95: 216-225, 2021 07.
Article in English | MEDLINE | ID: mdl-33775832

ABSTRACT

BACKGROUND: Depressive symptoms in Alzheimer's disease (AD) predict worse cognitive and functional outcomes. Both AD and major depression inflammatory processes are characterized by shunted tryptophan metabolism away from serotonin (5-HT) and toward the neuroinflammatory kynurenine (Kyn) pathway. The present study assessed associations between Kyn and behavioral, neuroanatomical, neuropathological, and physiological outcomes common to both AD and negative affect across the AD continuum. METHODS: In 58 cognitively normal, 396 mild cognitive impairment, and 112 AD participants from the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI1) cohort, serum markers of 5-HT, tryptophan, and Kyn were measured and their relationships investigated with immunologic markers, affect and functional outcomes, CSF markers of beta-amyloid (Aß) and tau, and regional gray matter. RESULTS: A higher Kyn/Tryptophan ratio was linked to many inflammatory markers, as well as lower functional independence and memory scores. A higher Kyn/5-HT ratio showed similar associations, but also strong relationships with negative affect and neuropsychiatric disturbance, executive dysfunction, and global cognitive decline. Further, gray matter atrophy was seen in hippocampus, anterior cingulate, and prefrontal cortices, as well as greater amyloid and total tau deposition. Finally, using moderated-mediation, several pro-inflammatory factors partially mediated Kyn/5-HT and negative affect scores in participants with subclinical Aß (i.e., Aß-), whereas such associations were fully mediated by Complement 3 in Aß+ participants. CONCLUSION: These findings suggest that inflammatory signaling cascades may occur during AD, which is associated with increased Kyn metabolism that influences the pathogenesis of negative affect. Aß and the complement system may be critical contributing factors in this process.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Amyloid beta-Peptides , Humans , Inflammation , Kynurenine
15.
J Neuroinflammation ; 17(1): 172, 2020 May 31.
Article in English | MEDLINE | ID: mdl-32475344

ABSTRACT

BACKGROUND: Production of inflammatory mediators by reactive microglial cells in the brain is generally considered the primary mechanism underlying the development of symptoms of sickness in response to systemic inflammation. METHODS: Depletion of microglia was achieved in C57BL/6 mice by chronic oral administration of PLX5622, a specific antagonist of colony stimulating factor-1 receptor, and in rats by a knock-in model in which the diphtheria toxin receptor was expressed under the control of the endogenous fractalkine receptor (CX3CR1) promoter sequence. After successful microglia depletion, mice and rats were injected with a sickness-inducing dose of lipopolysaccharide according to a 2 (depletion vs. control) × 2 (LPS vs. saline) factorial design. Sickness was measured by body weight loss and decreased locomotor activity in rats and mice, and reduced voluntary wheel running in mice. RESULTS: Chronic administration of PLX5622 in mice and administration of diphtheria toxin to knock-in rats depleted microglia and peripheral tissue macrophages. However, it did not abrogate the inducible expression of proinflammatory cytokines in the brain in response to LPS and even exacerbated it for some of the cytokines. In accordance with these neuroimmune effects, LPS-induced sickness was not abrogated, rather it was exacerbated when measured by running wheel activity in mice. CONCLUSIONS: These findings reveal that the sickness-inducing effects of acute inflammation can develop independently of microglia activation.


Subject(s)
Brain/immunology , Illness Behavior/physiology , Inflammation/immunology , Microglia , Animals , Brain/metabolism , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar
16.
Brain Behav Immun ; 88: 230-241, 2020 08.
Article in English | MEDLINE | ID: mdl-32428555

ABSTRACT

Fatigue is a common and debilitating symptom of cancer with few effective interventions. Cancer-related fatigue (CRF) is often associated with increases in inflammatory cytokines, however inflammation may not be requisite for this symptom, suggesting other biological mediators also play a role. Because tumors are highly metabolically active and can amplify their energetic toll via effects on distant organs, we sought to determine whether CRF could be explained by metabolic competition exacted by the tumor. We used a highly metabolically active murine E6/E7/hRas model of head and neck cancer for this purpose. Mice with or without tumors were submitted to metabolic constraints in the form of voluntary wheel running or acute overnight fasting and their adaptive behavioral (home cage activity and fasting-induced wheel running) and metabolic responses (blood glucose, ketones, and liver metabolic gene expression) were monitored. We found that the addition of running wheel was necessary to measure activity loss, used as a surrogate for fatigue in this study. Tumor-bearing mice engaged in wheel running showed a decrease in blood glucose levels and an increase in lactate accumulation in the skeletal muscle, consistent with inhibition of the Cori cycle. These changes were associated with gene expression changes in the livers consistent with increased glycolysis and suppressed gluconeogenesis. Fasting also decreased blood glucose in tumor-bearing mice, without impairing glucose or insulin tolerance. Fasting-induced increases in wheel running and ketogenesis were suppressed by tumors, which was again associated with a shift from gluconeogenic to glycolytic metabolism in the liver. Blockade of IL-6 signaling with a neutralizing antibody failed to recover any of the behavioral or metabolic outcomes. Taken together, these data indicate that metabolic competition between the tumor and the rest of the organism is an important component of fatigue and support the hypothesis of a central role for IL-6-independent hepatic metabolic reprogramming in the pathophysiology of CRF.


Subject(s)
Interleukin-6 , Neoplasms , Animals , Fatigue , Mice , Motor Activity , Muscle, Skeletal , Neoplasms/complications
17.
Mol Psychiatry ; 24(10): 1523-1532, 2019 10.
Article in English | MEDLINE | ID: mdl-29988087

ABSTRACT

Inflammation activates indoleamine 2,3-dioxygenase (IDO) which metabolizes tryptophan into kynurenine. Circulating kynurenine is transported into the brain by the large amino transporter LAT1 at the level of the blood-brain barrier. We hypothesized that administration of leucine that has a high affinity for LAT1 should prevent the entry of kynurenine into the brain and attenuate the formation of neurotoxic kynurenine metabolites. To test whether leucine could prevent inflammation-induced depression-like behavior, mice were treated with lipopolysaccharide (LPS, 0.83 mg/kg IP) or saline and treated with L-leucine (50 mg/kg, IP) or vehicle administered before and 6 h after LPS. Depression-like behavior was measured by increased duration of immobility in the forced swim test and decreased sucrose preference. Leucine decreased brain kynurenine levels, blocked LPS-induced depression-like behavior and had antidepressant-like effects in control mice. Leucine had no effect of its own on sickness behavior and neuroinflammation. To confirm that leucine acts by interfering with the transport of kynurenine into the brain, mice were injected with L-leucine (300 mg/kg, IP) immediately before kynurenine (33 mg/kg IP) and brain kynurenine and depression-like behavior were measured 3 h later. Leucine did prevent the entry of exogenous kynurenine into the brain and abrogated depression-like behavior measured by increased duration of immobility in the forced swim test. Additional experiments using an in vitro model of the blood-brain barrier confirmed that kynurenine competes with leucine at the level of the amino acid transporter LAT1 for brain uptake. These experiments also revealed that efflux was the dominant direction of kynurenine transport and was largely independent of LAT1 and leucine, which explains why leucine could block brain uptake of kynurenine without affecting brain clearance. These findings demonstrate that leucine has antidepressant properties vis-à-vis inflammation-induced depression and one mechanism for this is by blocking the ability of kynurenine to enter the brain.


Subject(s)
Depression/drug therapy , Leucine/pharmacology , Amino Acid Transport System y+L/metabolism , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Blood-Brain Barrier/metabolism , Brain/metabolism , Depression/metabolism , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Disease Models, Animal , Hippocampus/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Leucine/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL
18.
Brain Behav Immun ; 81: 560-573, 2019 10.
Article in English | MEDLINE | ID: mdl-31310797

ABSTRACT

A reduction in food intake is commonly observed after bacterial infection, a phenomenon that can be reproduced by peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1ß), a pro-inflammatory cytokine released by LPS-activated macrophages. The arcuate nucleus of the hypothalamus (ARH) plays a major role in food intake regulation and expresses IL-1 type 1 receptor (IL-1R1) mRNA. In the present work, we tested the hypothesis that IL-1R1 expressing cells in the ARH mediate IL-1ß and/or LPS-induced hypophagia in the rat. To do so, we developed an IL-1ß-saporin conjugate, which eliminated IL-R1-expressing neurons in the hippocampus, and micro-injected it into the ARH prior to systemic IL-1ß and LPS administration. ARH IL-1ß-saporin injection resulted in loss of neuropeptide Y-containing cells and attenuated hypophagia and weight loss after intraperitoneal IL-1ß, but not LPS, administration. In conclusion, the present study shows that ARH NPY-containing neurons express functional IL-1R1s that mediate peripheral IL-1ß-, but not LPS-, induced hypophagia. Our present and previous findings indicate that the reduction of food intake after IL-1ß and LPS are mediated by different neural pathways.


Subject(s)
Body Weight/drug effects , Eating/drug effects , Interleukin-1beta/pharmacology , Saporins/pharmacology , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Cytokines/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-1/metabolism , Interleukin-1beta/chemistry , Lipopolysaccharides/pharmacology , Male , Neural Pathways/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology
19.
J Neurol Neurosurg Psychiatry ; 89(3): 287-293, 2018 03.
Article in English | MEDLINE | ID: mdl-28939684

ABSTRACT

Poststroke fatigue is a debilitating symptom and is poorly understood. Here we summarise molecular, behavioural and neurophysiological changes related to poststroke fatigue and put forward potential theories for mechanistic understanding of poststroke fatigue.


Subject(s)
Fatigue/physiopathology , Stroke/physiopathology , Fatigue/etiology , Fatigue/metabolism , Fatigue/psychology , Humans , Inflammation/metabolism , Kynurenine/metabolism , Signal Transduction , Stroke/complications , Stroke/metabolism , Stroke/psychology , Tryptophan/metabolism
20.
Brain Behav Immun ; 74: 28-42, 2018 11.
Article in English | MEDLINE | ID: mdl-30102966

ABSTRACT

Resilience is the process that allows individuals to adapt to adverse conditions and recover from them. This process is favored by individual qualities that have been amply studied in the field of stress such as personal control, positive affect, optimism, and social support. Biopsychosocial studies on the individual qualities that promote resilience show that these factors help protect against the deleterious influences of stressors on physiology in general and immunity in particular. The reverse is also true as there is evidence that immune processes influence resilience. Most of the data supporting this relationship comes from animal studies on individual differences in the ability to resist situations of chronic stress. These data build on the knowledge that has accumulated on the influence of immune factors on brain and behavior in both animal and human studies. In general, resilient individuals have a different immunophenotype from that of stress susceptible individuals. It is possible to render susceptible individuals resilient and vice versa by changing their inflammatory phenotype. The adaptive immune phenotype also influences the ability to recover from inflammation-induced symptoms. The modulation of these bidirectional relationships between resilience and immunity by the gut microbiota opens the possibility to influence them by probiotics and prebiotics. However, more focused studies on the reciprocal relationship between resilience and immunity will be necessary before this can be put into practice.


Subject(s)
Gastrointestinal Microbiome/physiology , Immunity/physiology , Resilience, Psychological , Adaptation, Psychological/physiology , Animals , Brain/immunology , Brain/physiology , Depression/microbiology , Depression/physiopathology , Humans , Prebiotics , Probiotics , Stress, Psychological/psychology
SELECTION OF CITATIONS
SEARCH DETAIL