Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Bioact Mater ; 38: 95-108, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699241

ABSTRACT

Androgenetic alopecia (AGA), the most prevalent clinical hair loss, lacks safe and effective treatments due to downregulated angiogenic genes and insufficient vascularization in the perifollicular microenvironment of the bald scalp in AGA patients. In this study, a hyaluronic acid (HA) based hydrogel-formed microneedle (MN) was designed, referred to as V-R-MNs, which was simultaneously loaded with vascular endothelial growth factor (VEGF) and the novel hair loss drug Ritlecitinib, the latter is encapsulated in slowly biodegradable polyhydroxyalkanoates (PHAs) nanoparticles (R-PHA NPs) for minimally invasive AGA treatment. The integration of HA based hydrogel alongside PHA nanoparticles significantly bolstered the mechanical characteristics of microneedles and enhanced skin penetration efficiency. Due to the biosafety, mechanical strength, and controlled degradation properties of HA hydrogel formed microneedles, V-R-MNs can effectively penetrate the skin's stratum corneum, facilitating the direct delivery of VEGF and Ritlecitinib in a minimally invasive, painless and long-term sustained release manner. V-R-MNs not only promoted angiogenesis and improve the immune microenvironment around the hair follicle to promote the proliferation and development of hair follicle cells, but also the application of MNs to the skin to produce certain mechanical stimulation could also promote angiogenesis. In comparison to the clinical drug minoxidil for AGA treatment, the hair regeneration effect of V-R-MN in AGA model mice is characterized by a rapid onset of the anagen phase, improved hair quality, and greater coverage. This introduces a new, clinically safer, and more efficient strategy for AGA treatment, and serving as a reference for the treatment of other related diseases.

2.
Int J Biol Macromol ; 265(Pt 1): 130649, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453121

ABSTRACT

Bone Morphogenetic Protein 4 (BMP4) is crucial for bone and cartilage tissue regeneration, essential in medical tissue engineering, cosmetology, and aerospace. However, its cost and degradation susceptibility pose significant clinical challenges. To enhance its osteogenic activity while reducing dosage and administration frequency, we developed a novel long-acting BMP4 delivery system using poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx) nanoparticles with soybean lecithin-modified BMP4 (sBP-NPs). These nanoparticles promote directed osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through sustained BMP4 release. sBP-NPs exhibited uniform size (100-200 nm) and surface charges, with higher BMP4 entrapment efficiency (82.63 %) compared to controls. After an initial burst release within 24 h, sBP-NPs achieved 80 % cumulative BMP4 release within 20 days, maintaining levels better than control BP-NPs with unmodified BMP4. Co-incubation and nanoparticle uptake experiments confirmed excellent biocompatibility of sBP-NPs, promoting hBMSC differentiation towards osteogenic lineage with increased expression of type I collagen, calcium deposition, and ALP activity (> 20,000 U/g protein) compared to controls. Moreover, hBMSCs treated with sBP-NPs exhibited heightened expression of osteogenic genetic markers, surpassing control groups. Hence, this innovative strategy of sustained BMP4 release from sBP-NPs holds potential to revolutionize bone regeneration in minimally invasive surgery, medical cosmetology or space environments.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Humans , Osteogenesis/genetics , Bone Morphogenetic Protein 4/genetics , Delayed-Action Preparations/pharmacology , Cell Differentiation , Bone Marrow Cells/metabolism , Cells, Cultured
3.
Biomater Transl ; 4(4): 234-247, 2023.
Article in English | MEDLINE | ID: mdl-38282701

ABSTRACT

Infection and rejection in musculoskeletal trauma often pose challenges for natural healing, prompting the exploration of biomimetic organ and tissue transplantation as a common alternative solution. Polyhydroxyalkanoates (PHAs) are a large family of biopolyesters synthesised in microorganism, demonstrating excellent biocompatibility and controllable biodegradability for tissue remodelling and drug delivery. With different monomer-combination and polymer-types, multi-mechanical properties of PHAs making them have great application prospects in medical devices with stretching, compression, twist in long time, especially in musculoskeletal tissue engineering. This review systematically summarises the applications of PHAs in multiple tissues repair and drug release, encompassing areas such as bone, cartilage, joint, skin, tendons, ligament, cardiovascular tissue, and nervous tissue. It also discusses challenges encountered in their application, including high production costs, potential cytotoxicity, and uncontrollable particle size distribution. In conclusion, PHAs offer a compelling avenue for musculoskeletal system applications, striking a balance between biocompatibility and mechanical performance. However, addressing challenges in their production and application requires further research to unleash their full potential in tackling the complexities of musculoskeletal regeneration.

4.
Biomater Sci ; 11(18): 6013-6034, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37522312

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Biocompatible Materials/chemistry , Tissue Engineering , Drug Delivery Systems
5.
Adv Mater ; 30(31): e1802273, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29920804

ABSTRACT

To avoid large open surgery using scaffold transplants, small-sized cell carriers are employed to repair complexly shaped tissue defects. However, most cell carriers show poor cell adherences and viability. Therefore, polyhydroxyalkanoate (PHA), a natural biopolymer, is used to prepare highly open porous microspheres (OPMs) of 300-360 µm in diameter, combining the advantages of microspheres and scaffolds to serve as injectable carriers harboring proliferating stem cells. In addition to the convenient injection to a defected tissue, and in contrast to poor performances of OPMs made of polylactides (PLA OPMs) and traditional less porous hollow microspheres (PHA HMs), PHA OPMs present suitable surface pores of 10-60 µm and interconnected passages with an average size of 8.8 µm, leading to a high in vitro cell adhesion of 93.4%, continuous proliferation for 10 d and improved differentiation of human bone marrow mesenchymal stem cells (hMSCs). PHA OPMs also support stronger osteoblast-regeneration compared with traditional PHA HMs, PLA OPMs, commercial hyaluronic acid hydrogels, and carrier-free hMSCs in an ectopic bone-formation mouse model. PHA OPMs protect cells against stresses during injection, allowing more living cells to proliferate and migrate to damaged tissues. They function like a micro-Noah's Ark to safely transport cells to a defect tissue.


Subject(s)
Microspheres , Polyhydroxyalkanoates/chemistry , Tissue Engineering , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Marrow Cells/cytology , Bone Regeneration/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Osteocalcin/genetics , Osteocalcin/metabolism , Polyesters/chemistry , Porosity , Prohibitins , Tissue Scaffolds/chemistry
6.
Artif Cells Nanomed Biotechnol ; 46(sup2): 473-483, 2018.
Article in English | MEDLINE | ID: mdl-29653500

ABSTRACT

Different forms of biopolyester PHBVHHx microspheres were prepared so as to compare the mammalian cell behaviors in suspension cultivation system. Based on a microbial terpolyester PHBVHHx consisting of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV), and 3-hydroxyhexanoate (HHx), solid microspheres (SMSs), hollow microspheres (HMSs), and porous microspheres (PMS) were successfully prepared by a modified solvent evaporation method involving gas-in-oil-in-water (G1/O/W2) double emulsion, water-in-oil-in-water (W1/O/W2) double emulsion and oil-in-water (O/W) single emulsion, respectively. Generally, PMSs have diameters ranging from 330 to 400 µm with pore sizes of 10 to 60 µm. The pores inside the PMSs were found well interconnected compared with PHBVHHx prepared by the traditional solvent evaporation method, resulting in the highest water uptake ratio. When inoculated with human osteoblast-like cells lasting 6 days, PMS showed much better cell attachment and proliferation compared with other less porous microspheres due to its large inner space as a 3 D carrier. Cell migration towards surface and other interconnected inner pores was clearly observable. Dead or apoptotic cells were found more common among less porous SMSs or HMSs compared with highly porous PMSs. It is therefore concluded that porous PHBVHHx microspheres with larger surface open pores and interconnected inner pores can serve as a carrier or scaffold supporting more and better cell growth for either injectable purposes or simply supporting cell growth.


Subject(s)
Microspheres , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/pharmacology , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Humans , Porosity , Prohibitins , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL