Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337035

ABSTRACT

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Subject(s)
COVID-19 , Respiratory Tract Infections , Vaccines , Cricetinae , Animals , Mice , CD8-Positive T-Lymphocytes , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Pan troglodytes
2.
Cell ; 184(7): 1804-1820.e16, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33691139

ABSTRACT

SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes and CD8+ T cells for optimal clinical and virological benefit. Thus, potently neutralizing mAbs utilize Fc effector functions during therapy to mitigate lung infection and disease.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 , Immunoglobulin Fc Fragments/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CHO Cells , COVID-19/immunology , COVID-19/therapy , Chlorocebus aethiops , Cricetulus , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , SARS-CoV-2/immunology , Vero Cells , Viral Load
4.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34464596

ABSTRACT

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Germinal Center/immunology , Lung/virology , SARS-CoV-2/physiology , Animals , Cells, Cultured , Clone Cells , Cricetinae , Disease Models, Animal , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Viral Load
5.
Nature ; 603(7902): 687-692, 2022 03.
Article in English | MEDLINE | ID: mdl-35062015

ABSTRACT

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Subject(s)
COVID-19/pathology , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cricetinae , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Viral Load
6.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: mdl-35361968

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
7.
Nature ; 596(7870): 103-108, 2021 08.
Article in English | MEDLINE | ID: mdl-34153975

ABSTRACT

Rapidly emerging SARS-CoV-2 variants jeopardize antibody-based countermeasures. Although cell culture experiments have demonstrated a loss of potency of several anti-spike neutralizing antibodies against variant strains of SARS-CoV-21-3, the in vivo importance of these results remains uncertain. Here we report the in vitro and in vivo activity of a panel of monoclonal antibodies (mAbs), which correspond to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron and Lilly, against SARS-CoV-2 variant viruses. Although some individual mAbs showed reduced or abrogated neutralizing activity in cell culture against B.1.351, B.1.1.28, B.1.617.1 and B.1.526 viruses with mutations at residue E484 of the spike protein, low prophylactic doses of mAb combinations protected against infection by many variants in K18-hACE2 transgenic mice, 129S2 immunocompetent mice and hamsters, without the emergence of resistance. Exceptions were LY-CoV555 monotherapy and LY-CoV555 and LY-CoV016 combination therapy, both of which lost all protective activity, and the combination of AbbVie 2B04 and 47D11, which showed a partial loss of activity. When administered after infection, higher doses of several mAb cocktails protected in vivo against viruses with a B.1.351 spike gene. Therefore, many-but not all-of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing variant strains of SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , COVID-19/virology , Neutralization Tests , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , Chlorocebus aethiops , Female , Humans , Male , Mesocricetus/immunology , Mesocricetus/virology , Mice , Mice, Transgenic , Post-Exposure Prophylaxis , Pre-Exposure Prophylaxis , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
8.
J Virol ; 97(9): e0062823, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37676002

ABSTRACT

The continued evolution and emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have resulted in challenges to vaccine and antibody efficacy. The emergence of each new variant necessitates the need to re-evaluate and refine animal models used for countermeasure testing. Here, we tested a recently circulating SARS-CoV-2 Omicron lineage variant, BQ.1.1, in multiple rodent models including K18-human ACE2 (hACE2) transgenic, C57BL/6J, and 129S2 mice, and Syrian golden hamsters. In contrast to a previously dominant BA.5.5 Omicron variant, inoculation of K18-hACE2 mice with BQ.1.1 resulted in substantial weight loss, a characteristic seen in pre-Omicron variants. BQ.1.1 also replicated to higher levels in the lungs of K18-hACE2 mice and caused greater lung pathology than the BA.5.5 variant. However, in C57BL/6J mice, 129S2 mice, and Syrian hamsters, BQ.1.1 did not cause increased respiratory tract infection or disease compared to animals administered BA.5.5. Moreover, the rates of direct contact or airborne transmission in hamsters were not significantly different after BQ.1.1 and BA.5.5 infections. Taken together, these data suggest that the BQ.1.1 Omicron variant has increased virulence in rodent species that express hACE2, possibly due to the acquisition of unique spike mutations relative to earlier Omicron variants. IMPORTANCE As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, there is a need to rapidly assess the efficacy of vaccines and antiviral therapeutics against newly emergent variants. To do so, the commonly used animal models must also be re-evaluated. Here, we determined the pathogenicity of the BQ.1.1 SARS-CoV-2 variant in multiple SARS-CoV-2 animal models including transgenic mice expressing human ACE2 (hACE2), two strains of conventional laboratory mice, and Syrian hamsters. While BQ.1.1 and BA.5.5 infection resulted in similar levels of viral burden and clinical disease in hamsters and the conventional strains of laboratory mice tested, increases in lung infection were detected in hACE2-expressing transgenic mice, which corresponded with greater levels of pro-inflammatory cytokines and lung pathology. Taken together, our data highlight important differences in two closely related Omicron SARS-CoV-2 variant strains and provide a foundation for evaluating countermeasures.


Subject(s)
COVID-19 , Disease Models, Animal , Mesocricetus , SARS-CoV-2 , Animals , Cricetinae , Humans , Mice , COVID-19/virology , Lung/pathology , Lung/virology , Mesocricetus/virology , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Load , Virulence
9.
J Virol ; 97(6): e0063523, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37223945

ABSTRACT

The stem-loop II motif (s2m) is an RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over 25 years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild-type and s2m deletion viruses using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) and dimethyl sulfate mutational profiling and sequencing (DMS-MaPseq). These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'-UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contain functional structures to support virus replication, translation, and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is an RNA structural element that is found in many RNA viruses. This motif was discovered over 25 years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that s2m is dispensable for SARS-CoV-2.


Subject(s)
Nucleotide Motifs , SARS-CoV-2 , Animals , Cricetinae , 3' Untranslated Regions/genetics , COVID-19/virology , Mesocricetus , Mutation , SARS-CoV-2/genetics , Nucleotide Motifs/genetics , RNA, Viral/chemistry , RNA, Viral/genetics
11.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915710

ABSTRACT

The transmission bottleneck, defined as the number of viruses that transmit from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, SARS-CoV-2's transmission bottleneck remains poorly characterized, in part due to a lack of quantitative measurement tools. To address this, we adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes inserted in ORF10, a non-translated ORF. We directly inoculated donor Syrian hamsters intranasally with this barcoded virus pool and exposed a paired naïve contact hamster to each donor. Following exposure, the nasal turbinates, trachea, and lungs were collected, viral titers were measured, and the number of barcodes in each tissue were enumerated to quantify the transmission bottleneck. The duration and route (airborne, direct contact, and fomite) of exposure were varied to assess their impact on the transmission bottleneck. In airborne-exposed hamsters, the transmission bottleneck increased with longer exposure durations. We found that direct contact exposure produced the largest transmission bottleneck (average 27 BCs), followed by airborne exposure (average 16 BCs) then fomite exposure (average 8 BCs). Interestingly, we detected unique BCs in both the upper and lower respiratory tract of contact animals from all routes of exposure, suggesting that SARS-CoV-2 can directly infect hamster lungs. Altogether, these findings highlight the utility of barcoded viruses as tools to rigorously study virus transmission. In the future, barcoded SARS-CoV-2 will strengthen studies of immune factors that influence virus transmission.

12.
Microbiol Spectr ; 11(1): e0424022, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36695597

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December of 2019 and is responsible for millions of infections and deaths across the globe. Vaccination against SARS-CoV-2 has proven effective to contain the spread of the virus and reduce disease. The production and distribution of these vaccines occurred at a remarkable pace, largely through the employment of the novel mRNA platform. However, interruptions in supply chain and high demand for clinical grade reagents have impeded the manufacture and distribution of mRNA vaccines at a time when accelerated vaccine deployment is crucial. Furthermore, the emergence of SARS-CoV-2 variants across the globe continues to threaten the efficacy of vaccines encoding the ancestral virus spike protein. Here, we report results from preclinical studies on mRNA vaccines developed using a proprietary mRNA production process developed by GreenLight Biosciences. Two mRNA vaccines encoding the full-length, nonstabilized SARS-CoV-2 spike protein, GLB-COV2-042 and GLB-COV2-043, containing uridine and pseudouridine, respectively, were evaluated in rodents for their immunogenicity and protection from SARS-CoV-2 challenge with the ancestral strain and the Alpha (B.1.1.7) and Beta (B.1.351) variants. In mice and hamsters, both vaccines induced robust spike-specific binding and neutralizing antibodies, and in mice, vaccines induced significant T cell responses with a clear Th1 bias. In hamsters, both vaccines conferred significant protection following challenge with SARS-CoV-2 as assessed by weight loss, viral load, and virus replication in the lungs and nasopharynx. These results support the development of GLB-COV2-042 and GLB-COV2-043 for clinical use. IMPORTANCE SARS-CoV-2 continues to disrupt everyday life and cause excess morbidity and mortality worldwide. Vaccination has been key to quelling the impact of this respiratory pathogen, and mRNA vaccines have led the charge on this front. However, the emergence of SARS-CoV-2 variants has sparked fears regarding vaccine efficacy. Furthermore, SARS-CoV-2 vaccines continue to be unevenly distributed across the globe. For these reasons and despite the success of emergency authorized and licensed SARS-CoV-2 vaccines, additional vaccines are needed to meet public health demands. The studies presented here are significant as they demonstrate robust protective efficacy of mRNA vaccines developed by GreenLight Biosciences against not only wild-type SARS-CoV-2, but also Alpha and Beta variants. These results support the progression of GreenLight Biosciences SARS-CoV-2 mRNA vaccines to clinical trials as another defense against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , mRNA Vaccines , Animals , Cricetinae , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , mRNA Vaccines/immunology , SARS-CoV-2/genetics
13.
bioRxiv ; 2023 May 01.
Article in English | MEDLINE | ID: mdl-37205409

ABSTRACT

The continued evolution and emergence of novel SARS-CoV-2 variants has resulted in challenges to vaccine and antibody efficacy. The emergence of each new variant necessitates the need to re-evaluate and refine animal models used for countermeasure testing. Here, we tested a currently circulating SARS-CoV-2 Omicron lineage variant, BQ.1.1, in multiple rodent models including K18-hACE2 transgenic, C57BL/6J, and 129S2 mice, and Syrian golden hamsters. In contrast to a previously dominant BA.5.5 Omicron variant, inoculation of K18-hACE2 mice with BQ.1.1 resulted in a substantial weight loss, a characteristic seen in pre-Omicron variants. BQ.1.1 also replicated to higher levels in the lungs of K18-hACE2 mice and caused greater lung pathology than the BA.5.5 variant. However, C57BL/6J mice, 129S2 mice, and Syrian hamsters inoculated with BQ.1.1 showed no differences in respiratory tract infection or disease compared to animals administered BA.5.5. Airborne or direct contact transmission in hamsters was observed more frequently after BQ.1.1 than BA.5.5 infection. Together, these data suggest that the BQ.1.1 Omicron variant has increased virulence in some rodent species, possibly due to the acquisition of unique spike mutations relative to other Omicron variants. IMPORTANCE: As SARS-CoV-2 continues to evolve, there is a need to rapidly assess the efficacy of vaccines and antiviral therapeutics against newly emergent variants. To do so, the commonly used animal models must also be reevaluated. Here, we determined the pathogenicity of the circulating BQ.1.1 SARS-CoV-2 variant in multiple SARS-CoV-2 animal models including transgenic mice expressing human ACE2, two strains of conventional laboratory mice, and Syrian hamsters. While BQ.1.1 infection resulted in similar levels of viral burden and clinical disease in the conventional laboratory mice tested, increases in lung infection were detected in human ACE2-expressing transgenic mice, which corresponded with greater levels of pro-inflammatory cytokines and lung pathology. Moreover, we observed a trend towards greater animal-to-animal transmission of BQ.1.1 than BA.5.5 in Syrian hamsters. Together, our data highlight important differences in two closely related Omicron SARS-CoV-2 variant strains and provide a foundation for evaluating countermeasures.

14.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205450

ABSTRACT

We previously described a nasally delivered monovalent adenoviral-vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-S, targeting Wuhan-1 spike [S]; iNCOVACC®) that is currently used in India as a primary or booster immunization. Here, we updated the mucosal vaccine for Omicron variants by creating ChAd-SARS-CoV-2-BA.5-S, which encodes for a pre-fusion and surface-stabilized S protein of the BA.5 strain, and then tested monovalent and bivalent vaccines for efficacy against circulating variants including BQ.1.1 and XBB.1.5. Whereas monovalent ChAd-vectored vaccines effectively induced systemic and mucosal antibody responses against matched strains, the bivalent ChAd-vectored vaccine elicited greater breadth. However, serum neutralizing antibody responses induced by both monovalent and bivalent vaccines were poor against the antigenically distant XBB.1.5 Omicron strain and did not protect in passive transfer experiments. Nonetheless, nasally delivered bivalent ChAd-vectored vaccines induced robust antibody and spike-specific memory T cell responses in the respiratory mucosa, and conferred protection against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in the upper and lower respiratory tracts of both mice and hamsters. Our data suggest that a nasally delivered bivalent adenoviral-vectored vaccine induces protective mucosal and systemic immunity against historical and emerging SARS-CoV-2 strains without requiring high levels of serum neutralizing antibody.

15.
Nat Commun ; 14(1): 3959, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37402814

ABSTRACT

Prophylactic vaccines for SARS-CoV-2 have lowered the incidence of severe COVID-19, but emergence of viral variants that are antigenically distinct from the vaccine strains are of concern and additional, broadly acting preventive approaches are desirable. Here, we report on a glycolipid termed 7DW8-5 that exploits the host innate immune system to enable rapid control of viral infections in vivo. This glycolipid binds to CD1d on antigen-presenting cells and thereby stimulates NKT cells to release a cascade of cytokines and chemokines. The intranasal administration of 7DW8-5 prior to virus exposure significantly blocked infection by three different authentic variants of SARS-CoV-2, as well as by respiratory syncytial virus and influenza virus, in mice or hamsters. We also found that this protective antiviral effect is both host-directed and mechanism-specific, requiring both the CD1d molecule and interferon-[Formula: see text]. A chemical compound like 7DW8-5 that is easy to administer and cheap to manufacture may be useful not only in slowing the spread of COVID-19 but also in responding to future pandemics long before vaccines or drugs are developed.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Mice , Animals , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines
16.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993345

ABSTRACT

The stem-loop II motif (s2m) is a RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over twenty-five years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also compared the secondary structure of the 3' UTR of wild type and s2m deletion viruses using SHAPE-MaP and DMS-MaPseq. These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE: RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contain functional structures to support virus replication, translation and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is a RNA structural element that is found in many RNA viruses. This motif was discovered over twenty-five years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that the s2m is dispensable for SARS-CoV-2.

17.
Med ; 3(5): 309-324.e6, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35584653

ABSTRACT

BACKGROUND: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune-evasion properties have arisen, which could jeopardize recently deployed vaccine- and antibody-based countermeasures. METHODS: Here, we evaluated in mice and hamsters the efficacy of a pre-clinical version of the Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.S) against the B.1.621 (Mu) variant of SARS-CoV-2, which contains spike mutations T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, and D950N. FINDINGS: Immunization of 129S2 and K18-human ACE2 transgenic mice with the mRNA-1273 vaccine protected against weight loss, lung infection, and lung pathology after challenge with the B.1.621 or WA1/2020 N501Y/D614G SARS-CoV-2 strain. Similarly, immunization of 129S2 mice and Syrian hamsters with a high dose of Ad26.COV2.S reduced lung infection after B.1.621 virus challenge. CONCLUSIONS: Thus, immunity induced by the mRNA-1273 or Ad26.COV2.S vaccine can protect against the B.1.621 variant of SARS-CoV-2 in multiple animal models. FUNDING: This study was supported by the NIH (R01 AI157155 and U01 AI151810), NIAID Centers of Excellence for Influenza Research and Response [CEIRR] contracts 75N93021C00014 and 75N93021C00016, and the Collaborative Influenza Vaccine Innovation Centers [CIVIC] contract 75N93019C00051. It was also supported, in part, by the National Institutes of Allergy and Infectious Diseases Center for Research on Influenza Pathogenesis (HHSN272201400008C) and the Japan Program for Infectious Diseases Research and Infrastructure (JP21wm0125002) from the Japan Agency for Medical Research and Development (AMED).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Influenza, Human , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/pharmacology , Ad26COVS1 , Animals , Antibodies, Neutralizing , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Cricetinae , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , mRNA Vaccines/immunology , mRNA Vaccines/pharmacology
18.
bioRxiv ; 2022 May 02.
Article in English | MEDLINE | ID: mdl-35547847

ABSTRACT

The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.

19.
mBio ; 13(1): e0337721, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35038906

ABSTRACT

Pathogenic coronaviruses are a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified small-molecule inhibitors that potently block the replication of severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with a 50% effective concentration of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types, including primary human bronchial epithelial cells, against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens. IMPORTANCE The coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is an ongoing public health disaster worldwide. Although several vaccines are available as a preventive measure and the FDA approval of an orally bioavailable drug is on the horizon, there remains a need for developing antivirals against SARS-CoV-2 that could work on the early course of infection. By using infectious reporter viruses, we screened small-molecule inhibitors for antiviral activity against SARS-CoV-2. Among the top hits was JIB-04, a compound previously studied for its anticancer activity. Here, we showed that JIB-04 inhibits the replication of SARS-CoV-2 as well as different DNA and RNA viruses. Furthermore, JIB-04 conferred protection in a porcine model of coronavirus infection, although to a lesser extent when given as therapeutic rather than prophylactic doses. Our findings indicate a limited but still promising utility of JIB-04 as an antiviral agent in the combat against COVID-19 and potentially other viral diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Humans , Animals , Swine , Antiviral Agents/pharmacology , COVID-19/metabolism , Virus Replication , Vero Cells
20.
iScience ; 24(10): 103213, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34632326

ABSTRACT

The emergence of SARS-CoV-2 has led to a global health crisis that, in addition to vaccines and immunomodulatory therapies, calls for the identification of antiviral therapeutics. The papain-like protease (PLpro) activity of nsp3 is an attractive drug target as it is essential for viral polyprotein cleavage and for deconjugation of ISG15, an antiviral ubiquitin-like protein. We show here that 6-Thioguanine (6-TG), an orally available and widely available generic drug, inhibits SARS-CoV-2 replication in Vero-E6 cells with an EC50 of approximately 2 µM. 6-TG also inhibited PLpro-catalyzed polyprotein cleavage and de-ISGylation in cells and inhibited proteolytic activity of the purified PLpro domain in vitro. We therefore propose that 6-TG is a direct-acting antiviral that could potentially be repurposed and incorporated into the set of treatment and prevention options for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL