Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255999

ABSTRACT

Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1ß, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS's co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.


Subject(s)
Allyl Compounds , Breast Neoplasms , Garlic , Precancerous Conditions , Sulfides , Humans , Female , Antioxidants , Reactive Oxygen Species , DNA Damage , Precancerous Conditions/drug therapy , Breast Neoplasms/drug therapy , Oxidative Stress
2.
Nutrients ; 16(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276538

ABSTRACT

Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1ß, CYP1A1, and DNA POLß. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1ß and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLß protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.


Subject(s)
Allyl Compounds , Anticarcinogenic Agents , Breast Neoplasms , Garlic , Precancerous Conditions , Humans , Female , Garlic/metabolism , Antioxidants/pharmacology , Benzo(a)pyrene/toxicity , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Apoptosis , Sulfides/pharmacology , Epithelial Cells/metabolism , Anticarcinogenic Agents/pharmacology , DNA Repair , Breast Neoplasms/chemically induced , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , DNA
3.
J Biomed Res Environ Sci ; 4(8): 1268-1273, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37719645

ABSTRACT

We describe barriers and supports for the practice of breastfeeding, with particular focus on Black and Hispanic women in the United States. We note that breastfeeding patterns reported by WIC agencies is highly variable across the country and within states. The global campaign to support breastfeeding, Baby Friendly Hospital Initiative, and its implementation in the US is described, as well as Healthy People goals and the mixture of policies across the US that provide incomplete support for breastfeeding mothers.

4.
Article in English | MEDLINE | ID: mdl-37297592

ABSTRACT

Being cognizant of the pronounced health advantages of breastfeeding for both the nursing mother and her infant, the breastfeeding dyad, we examined breastfeeding rates among Floridian women who gave birth from 2012 to 2014 (N = 639,052). We investigated the associations between breastfeeding initiation and WIC-based breastfeeding support (the Special Supplemental Nutrition Program for Women, Infants, and Children), education level, and race and ethnicity. We compared the percentage of breastfeeding mothers between those in the WIC program and those who were not, and we compared breastfeeding rates across racial and ethnic groups. Consistent with previous reports, black newborns in this study were breastfed at lower rates than other racial groups, and WIC program participants were less likely to breastfeed than non-WIC program participants. However, by breaking down the data by education level and race, and ethnicity, we see a significantly increased rate of breastfeeding due to WIC participation for both Hispanic and black women with less than a high school education. Further, we assessed differences by insurance type, race, and WIC participation. In multivariable logistic regression, we showed that the WIC program has a significant positive impact on breastfeeding rates for all but white non-Hispanic mothers, independent of sociodemographic and geographic variables. We also note a trend of increasing breastfeeding rates over the study period (p-value < 0.0001), which has positive public health implications.


Subject(s)
Breast Feeding , Food Assistance , Humans , Infant , Infant, Newborn , Child , Female , Florida , Infant Nutritional Physiological Phenomena , Ethnicity , Mothers
5.
Nutr Cancer ; 64(7): 1112-21, 2012.
Article in English | MEDLINE | ID: mdl-23006051

ABSTRACT

Diallyl disulfide (DADS), a garlic organosulfur compound, has been researched as a cancer prevention agent; however, the role of DADS in the suppression of cancer initiation in nonneoplastic cells has not been elucidated. To evaluate DADS inhibition of early carcinogenic events, MCF-10A cells were pretreated (PreTx) with DADS followed by the ubiquitous carcinogen benzo(a)pyrene (BaP), or cotreated (CoTx) with DADS and BaP for up to 24 h. The cells were evaluated for changes in cell viability/proliferation, cell cycle, induction of peroxide formation, and DNA damage. BaP induced a statistically significant increase in cell proliferation at 6 h, which was attenuated with DADS CoTx. PreTx with 6 and 60 µM of DADS inhibited BaP-induced G2/M arrest by 68% and 78%, respectively. DADS, regardless of concentration or method, inhibited BaP-induced extracellular aqueous peroxide formation within 24 h. DADS attenuated BaP-induced DNA single-strand breaks at all time points through both DADS Pre- and CoTx, with significant inhibition for all treatments sustained after 6 h. DADS was effective in inhibiting BaP-induced cell proliferation, cell cycle transitions, reactive oxygen species, and DNA damage in a normal cell line, and thus may inhibit environmentally induced breast cancer initiation.


Subject(s)
Allyl Compounds/pharmacology , Benzo(a)pyrene/toxicity , Carcinogens/toxicity , Disulfides/pharmacology , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemoprevention , DNA Damage/drug effects , Garlic/chemistry , Humans , Reactive Oxygen Species/metabolism
6.
Cancer Genomics Proteomics ; 18(6): 735-755, 2021.
Article in English | MEDLINE | ID: mdl-34697066

ABSTRACT

BACKGROUND/AIM: Wild yam extract [Dioscorea villosa, (WYE)] is consistently lethal at low IC50s across diverse cancer-lines in vitro. Unlike traditional anti-cancer botanicals, WYE contains detergent saponins which reduce oil-water interfacial tensions causing disintegration of lipid membranes and causing cell lysis, creating an interfering variable. Here, we evaluate WYE at sub-lethal concentrations in MDA-MB-231 triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS: Quantification of saponins, membrane potential, lytic death and sub-lethal WYE changes in whole transcriptomic (WT) mRNA, miRNAs and biological parameters were evaluated. RESULTS: WYE caused 346 differentially expressed genes (DEGs) out of 48,226 transcripts tested; where up-regulated DEGS reflect immune stimulation, TNF signaling, COX2, cytokine release and cholesterol/steroid biosynthesis. Down-regulated DEGs reflect losses in cell division cycle (CDC), cyclins (CCN), cyclin-dependent kinases (CDKs), centromere proteins (CENP), kinesin family members (KIFs) and polo-like kinases (PLKs), which were in alignment with biological studies. CONCLUSION: Sub-lethal concentrations of WYE appear to evoke pro-inflammatory, steroid biosynthetic and cytostatic effects in TNBC cells.


Subject(s)
Dioscorea/chemistry , Gene Expression/genetics , Plant Extracts/chemistry , Triple Negative Breast Neoplasms/diet therapy , Humans
7.
Anticancer Res ; 41(12): 5919-5933, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34848446

ABSTRACT

BACKGROUND/AIM: Diallyl trisulfide (DATS) has been shown to prevent and inhibit breast carcinogenesis. CCL2/MCP-1 has been shown to play a significant role in breast cancer. This study explored DATS efficacy on triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS: DATS efficacy on TNF-α induced TNBC cells were examined via trypan blue exclusion test, wound-healing assay, human cytokine arrays, ELISA, and RT-PCR. RESULTS: DATS significantly induced cell death and inhibited cell migration. Expression of CCL2/MCP-1, IL-6, PDGF-BB, NT-3, and GM-CSF in TNF-α-treated cells increased. However, DATS significantly decreased the expression of CCL2/MCP-1 in TNF-α-treated MDA-MB-231 but not in MDA-MB-468 cells. DATS significantly down-regulated mRNA expression of IKBKE and MAPK8 in both cell lines, indicating a possible effect in genes involved in the NF-κB and MAPK signaling. CONCLUSION: DATS may have a role in TNBC therapy and prevention by targeting CCL2.


Subject(s)
Allyl Compounds/pharmacology , Chemokine CCL2/biosynthesis , Sulfides/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cytokines/biosynthesis , Female , Gene Expression Regulation, Neoplastic , Humans
8.
Biomolecules ; 11(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34572526

ABSTRACT

Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase ß (Pol ß) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation (p < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 µM and 60 µM DAS, respectively. Co-treatment with DAS (60 µM and 600 µM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of H2O2 in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 µM DAS increased DNA Pol ß expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.


Subject(s)
Allyl Compounds/pharmacology , Breast/pathology , Carcinogenesis/metabolism , DNA Breaks, Double-Stranded , Epithelial Cells/metabolism , Reactive Oxygen Species/metabolism , Sulfides/pharmacology , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Benzo(a)pyrene , Bromodeoxyuridine/metabolism , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , DNA Polymerase beta/metabolism , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Female , Humans
9.
Neurochem Res ; 35(2): 288-97, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19757036

ABSTRACT

Investigations with astroglial cells carry more prominence in drug abuse studies. However, due to earlier perception that astroglial cells were only passive bystanders in neural signal transmission, not many investigations were conducted on the toxicity of various abused drugs, like cocaine. The present study was aimed to discern the effect of cocaine on rat astroglioma cells and analyzed qualitatively for morphological features as well as vacuolation by phase contrast microscope, quantitatively for cytotoxicity, mitochondrial membrane potential by rhodamine- 123 fluorometric assay, and cell cycle analysis by flow cytometry. Based on population cell doubling time studies, glial cells were grown in 10% FBS in RPMI 1640 medium and treated with cocaine for 24 or 48 h. Microscopic assessments clearly demonstrated massive vacuolation and significant disruption at general architecture of glial cell morphology with cocaine. Chronic cocaine treatment (24 or 48 h) caused significant loss of cell viability. The sublethal dose of cocaine was found to be 4.307 and 3.794 mM at 24 and 48 h, respectively. Cocaine reduced the mitochondrial membrane potential in a dose dependent manner with ED(50) of 4 mM after 24 h. Cell cycle analysis suggested dual inhibition at G0/G1 and G2/M phases after 24 and 48 h, respectively. In summary, our findings suggest that cocaine toxicity was due to loss of mitochondrial membrane potential, vacuolation, and dual inhibition of cell cycle phases. These results may shed light in understanding the onset of some early key events in cocaine-induced toxicity in glial cells.


Subject(s)
Cell Cycle/drug effects , Cocaine/pharmacology , Membrane Potential, Mitochondrial/drug effects , Animals , Apoptosis/drug effects , Astrocytoma , Cell Division/drug effects , Cell Line, Tumor , Cell Survival/drug effects , G2 Phase/drug effects , Neuroglia/cytology , Neuroglia/drug effects , Rats , Resting Phase, Cell Cycle/drug effects , Vacuoles/drug effects
10.
Neurochem Res ; 35(9): 1413-21, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20508987

ABSTRACT

Impaired mitochondrial function in glial and neuronal cells in the substantia nigra is one of the most likely causes of Parkinson's disease. In this study, we investigated the protective role of glucose on early key events associated with MPP(+)-induced changes in rat C6 astroglial cells. Studies were carried out to examine alterations in mitochondrial respiratory status, membrane potential, glutathione levels, and cell cycle phase inhibition at 48 h in 2 and 10 mM glucose in media. The results obtained suggest that MPP(+) caused significant cell death in 2 mM glucose with LC(50) 0.14 +/- 0.005 mM, while 10 mM glucose showed highly significant protection against MPP(+) toxicity with LC(50) 0.835 +/- 0.03 mM. This protection was not observed with cocaine, demonstrating its compound specificity. MPP(+) in 2 mM glucose decreased significantly mitochondrial respiration, membrane potential and glutathione levels in a dose dependent manner, while 10 mM glucose significantly restored them. MPP(+) in 2 mM glucose arrested the cells at G0/G1 and G2/M phases, demonstrating its dual inhibitory effects. However, in 10 mM glucose, MPP(+) caused G0/G1 arrest only. In summary, the results suggest that loss of cell viability in 2 mM glucose group with MPP(+) treatments was due to mitochondrial dysfunction caused by multilevel mechanism, involving significant decrease in mitochondrial respiration, membrane potential, glutathione levels, and dual arrest of cell phases, while 10 mM glucose rescued astroglial cells from MPP(+) toxicity by significant maintenance of these factors.


Subject(s)
1-Methyl-4-phenylpyridinium/pharmacology , Astrocytes/drug effects , Glucose/metabolism , Herbicides/pharmacology , Mitochondria , Animals , Astrocytes/cytology , Astrocytes/metabolism , Cell Cycle/drug effects , Cell Line , Cell Proliferation , Cell Respiration/drug effects , Glutathione/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Rats
11.
Sci Rep ; 9(1): 9412, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253835

ABSTRACT

Methamphetamine (METH) is a powerfully addictive psychostimulant that has a pronounced effect on the central nervous system (CNS). The present study aimed to assess METH toxicity in differentiated C6 astroglia-like cells through biochemical and toxicity markers with acute (1 h) and chronic (48 h) treatments. In the absence of external stimulants, cellular differentiation of neuronal morphology was achieved through reduced serum (2.5%) in the medium. The cells displayed branched neurite-like processes with extensive intercellular connections. Results indicated that acute METH treatment neither altered the cell morphology nor killed the cells, which echoed with lack of consequence on reactive oxygen species (ROS), nitric oxide (NO) or inhibition of any cell cycle phases except induction of cytoplasmic vacuoles. On the other hand, chronic treatment at 1 mM or above destroyed the neurite-like processors and decreased the cell viability that paralleled with increased levels of ROS, lipid peroxidation and lactate, depletion in glutathione (GSH) level and inhibition at G0/G1 phase of cell cycle, leading to apoptosis. Pre-treatment of cells with N-acetyl cysteine (NAC, 2.5 mM for 1 h) followed by METH co-treatment for 48 h rescued the cells completely from toxicity by decreasing ROS through increased GSH. Our results provide evidence that increased ROS and GSH depletion underlie the cytotoxic effects of METH in the cells. Since loss in neurite connections and intracellular changes can lead to psychiatric illnesses in drug users, the evidence that we show in our study suggests that these are also contributing factors for psychiatric-illnesses in METH addicts.


Subject(s)
Astrocytes/drug effects , Astrocytes/metabolism , Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Animals , Apoptosis/drug effects , Biomarkers , Cell Line , Cell Survival/drug effects , Central Nervous System Stimulants/toxicity , Glutathione/metabolism , Lipid Peroxidation/drug effects , Methamphetamine/toxicity , Rats , Reactive Oxygen Species/metabolism , Resting Phase, Cell Cycle/drug effects , Time Factors
12.
Int J Environ Res Public Health ; 4(1): 10-4, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17431309

ABSTRACT

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a major environmental pollutant. In this study, the effects of this carcinogen/mutagen and one of its metabolites, benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), on human prostate carcinoma cell line DU145, were examined. Cell viability, DNA damage, and cell cycle progression were evaluated as toxic end-points. We have shown that B[a]P and BPDE inhibited cell viability following 48 hr of exposure. Furthermore, comet assay analyses revealed that both B[a]P and BPDE induced DNA strand breaks in a concentration-dependent fashion. Flow cytometric analyses showed that about 70% of DU145 cells were arrested by B[a]P at the G1 phase, while about 76% were arrested at G1 phase by BPDE. These data reveal that B[a]P and BPDE are cytotoxic and genotoxic to DU145 prostate cancer cells.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Benzo(a)pyrene/toxicity , Carcinoma/pathology , Cell Cycle/drug effects , DNA Breaks/drug effects , Prostatic Neoplasms/pathology , Carcinogens/toxicity , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Male , Toxicity Tests
13.
J Interferon Cytokine Res ; 25(2): 82-91, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15695929

ABSTRACT

Asthma is a complex inflammatory disease characterized by a prolonged underlying airway inflammation resulting from cytokine-orchestrated signaling between many types of cells, including airway epithelial cells. Trafficking, recruitment, and activation of cells in airway disease are, in part, modulated by the newly discovered CC subfamily of chemokines, eotaxin (CCL11), eotaxin-2 (CCL24) and eotaxin-3 (CCL26), which transduce signals by acting as agonists for the CCR3 receptor. The specific cytokine stimuli that modulate CCL24 and CCL26 release in airway epithelial cells remain poorly defined. Thus, human 549 alveolar type II epithelium-like cells were stimulated singly and with combinations of 1-100 ng/ml tumor necrosis-factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-4, cytokines known to be elevated in the airways of asthmatics. Release of CCL11, CCL24, and CCL26 was quantified by ELISA, and CCR3 receptors monitored by immunocytochemistry and FACS analysis. Results suggest that epithelial cells release CCL11 during the first 24 h of stimulation, in contrast to a significant increase in CCL24 and CCL26 release after 24-48 h of stimulation. Differential release of the eotaxins in response to cytokine combinations was noted. The alveolar type II epithelial cells were found to possess constitutive CCR3 receptors, which increased after proinflammatory cytokine stimulation. The airway epithelium CCR3 receptor/eotaxin ligand signal transduction system may be an important target for development of novel mechanism-based adjunctive therapies designed to interrupt the underlying chronic inflammation in allergic and inflammatory disorders.


Subject(s)
Chemokines, CC/metabolism , Cytokines/pharmacology , Epithelial Cells/metabolism , Lung/metabolism , Receptors, Chemokine/metabolism , Cell Line , Chemokine CCL24 , Chemokine CCL26 , Chemotactic Factors, Eosinophil/metabolism , Enzyme-Linked Immunosorbent Assay , Eosinophils/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Flow Cytometry , Humans , Immunohistochemistry , Interleukin-1/pharmacology , Interleukin-4/pharmacology , Lung/cytology , Receptors, CCR3 , Tumor Necrosis Factor-alpha/pharmacology
14.
Food Chem Toxicol ; 50(7): 2524-30, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22525868

ABSTRACT

Diallyl trisulfide (DATS) is a garlic organosulfide that is toxic to cancer cells, however, little is known about its effect in the initiation phase of carcinogenesis. We sought to determine whether DATS could inhibit the carcinogen, benzo(a)pyrene (BaP), from inducing precancerous activity, in vitro. MCF-10A cells were either pre-treated (PreTx) or concurrently treated (CoTx) with 1 µM BaP, and 6 or 60 µM DATS for up to 24h. The DATS 6 and 60 µM CoTx inhibited BaP-induced cell proliferation by an average of 71.1% and 120.8%, respectively, at 6h. The 60 µM DATS pretreatment decreased BaP-induced G2/M cell cycle transition by 127%, and reduced the increase in cells in the S-phase by 42%; whereas 60 µM DATS CoTx induced a 177% increase in cells in G1. DATS effectively inhibited (P<0.001) BaP-induced peroxide formation by at least 54%, which may have prevented the formation of BaP-induced DNA strand breaks. In this study, we reveal mechanisms involved in DATS inhibition of BaP-induced carcinogenesis, including inhibition of cell proliferation, regulation of cell cycle, attenuation of ROS formation, and inhibition of DNA damage. At the doses evaluated, DATS appears to be an effective attenuator of BaP-induced breast carcinogenesis, in vitro.


Subject(s)
Allyl Compounds/pharmacology , Benzo(a)pyrene/antagonists & inhibitors , Cell Transformation, Neoplastic , Sulfides/pharmacology , Benzo(a)pyrene/toxicity , Cell Line, Tumor , Comet Assay , DNA Damage , Flow Cytometry , Humans
15.
Int J Mol Med ; 27(2): 243-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21125209

ABSTRACT

In this study, the protective effects of N-acetylcysteine (NAC), a precursor of reduced glutathione, were studied by measuring the viability, the levels of antioxidant enzymes, and by analyzing the cell cycle in cadmium (Cd)-treated rat liver cells. The cells were treated with 150 µM CdCl2 alone or co-treated with 150 µM CdCl2 and 5 mM NAC (2 h pre-, simultaneous or 2 h post-treatment) for 24 h. The viability of the cells treated with 150 µM CdCl2 alone decreased to 40.1%, while that of the cells co-treated with 5 mM NAC (pre-, simultaneous and post-treatment) significantly increased to 83.7, 86.2 and 83.7%, respectively in comparison to the control cells (100%). The catalase enzyme level decreased to undetectable level in the cells treated with CdCl2 alone, while it significantly increased in the co-treated cells (pre-, simultaneous and post-treatment) to 40.1, 34.3 and 13.2%, respectively. In the cells treated with CdCl2 alone, the glutathione peroxidase enzyme level decreased to 78.3%, while it increased in the co-treated cells (pre-, simultaneous, and post-treatment) to 84.5, 83.3 and 87.9%, respectively. The glutathione reductase enzyme level decreased to 56.1% in the cells treated with cadmium alone, but significantly increased in the cells co treated with NAC (pre-, simultaneous and post-treatment) to 79.5, 78.5 and 78.2%, respectively. Cd caused cell cycle arrest at the S and G2/M phases. The co-treatment with NAC inhibited cell cycle arrest by shifting the cells to the G1 phase. These results clearly show the protective effects of NAC against Cd-induced damage in rat liver cells.


Subject(s)
Acetylcysteine/pharmacology , Hepatocytes/drug effects , Animals , Cadmium/toxicity , Catalase/metabolism , Cell Cycle/drug effects , Cell Line , Cell Survival/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Rats
16.
Toxicol In Vitro ; 25(8): 1733-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21911053

ABSTRACT

Cadmium is non-essential, carcinogenic and multitarget pollutant in the environment. Monoisoamyl-2,3-dimercaptosuccinate (MiADMS) is an ester of dimercaptosuccinic acid that acts as an antioxidant and chelator. Therefore, the mitigative action of MiADMS on viability, morphology, antioxidative enzymes and cell cycle were studied on rat liver cells treated with cadmium chloride (CdCl2). The cells were treated with 150 µM CdCl2 alone or cotreated with 300 µM MiADMS (concurrently, 2 h or 4 h post-CdCl2 treatment) for 24 h. The viability of cells treated with CdCl2 alone was decreased in comparison to the control cells. Cotreatment with MiADMS resulted in an increase in cell viability in comparison to the CdCl2 alone treated cells. The CdCl2 treatment altered the morphological shape of the cells, while cotreatment with MiADMS restored the shape. Antioxidative enzymes activities were decreased in the cells treated with CdCl2 alone, while MiADMS cotreatment resulted in an increase in enzyme activities. The CdCl2 arrested the cells in S phase of the cell cycle. Cotreatment with MiADMS alleviated cell cycle arrest by shifting to G1 phase. These results clearly show the mitigative action of MiADMS on CdCl2 toxicity and may suggest that MiADMS can be used as an antidote against cadmium.


Subject(s)
Antioxidants/pharmacology , Cadmium/toxicity , Chelating Agents/pharmacology , Environmental Pollutants/toxicity , Hepatocytes/drug effects , Succimer/analogs & derivatives , Animals , Catalase/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Survival/drug effects , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Hepatocytes/enzymology , Hepatocytes/pathology , Rats , S Phase/drug effects , Succimer/pharmacology
17.
Anticancer Res ; 29(8): 2993-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19661306

ABSTRACT

BACKGROUND: Breast cancer is the second leading cause of cancer deaths in US women. We evaluated two novel compounds, piperidinyl-diethylstilbestrol (DES) and pyrrolidinyl-diethylstilbestrol (DES) for cytotoxicity against brine shrimp larvae, MCF-7 and rat normal liver cells. MATERIALS AND METHODS: In vivo cytotoxicity was evaluated against shrimp larvae for 24 h, while in vitro cell toxicity was evaluated by dye binding crystal-violet method after 48 h. The role of these compounds on different phases of the cell cycle was assessed by flow cytometry. RESULTS: In shrimp assay, piperidinyl-DES and pyrrolidinyl-DES were potent with 50% effective dose (ED(50)) values of 7.9+/-0.38 and 15.6+/-1.3 microM, respectively. In MCF-7 and normal liver cells, the 50% lethal concentration (LC(50)) values were 19.7+/-0.95, 17.6+/-0.4 microM and 35.1 and >50 microM, respectively. Cell cycle analyses indicated that MCF-7 cells were arrested at the G(0)/G(1) stage with these compounds. CONCLUSION: The results indicate that pyrrolidinyl-DES possesses highly selective, potent anticancer activity.


Subject(s)
Adenocarcinoma/pathology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Artemia/drug effects , Breast Neoplasms/pathology , Piperidines/chemical synthesis , Piperidines/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacology , Stilbenes/chemical synthesis , Stilbenes/pharmacology , Adenocarcinoma/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Biological Assay/methods , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Female , Flow Cytometry , Humans , Larva/drug effects , Liver/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL