ABSTRACT
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 µM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 µM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 µM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Subject(s)
Cardiotonic Agents , Myocytes, Cardiac , Animals , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/chemistry , Inflammasomes/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Lipopolysaccharides/pharmacology , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL , Sirtuin 1/metabolism , Anti-Inflammatory Agents/pharmacology , Reactive Oxygen Species/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/chemistry , Endotoxemia/drug therapy , Endotoxemia/metabolismABSTRACT
Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.
Subject(s)
Acidosis, Lactic , Alanine , Muscle, Skeletal , Pyruvate Dehydrogenase Complex , Pyruvic Acid , Animals , Mice , Acidosis, Lactic/physiopathology , Glucose/metabolism , Muscle, Skeletal/metabolism , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Glutamine/metabolism , Alanine/metabolism , Gene Deletion , Diet , Mortality, PrematureABSTRACT
ABSTRACT: Mounting evidence suggests that cytochrome P450 epoxygenase-derived metabolites of docosahexaenoic acid, called epoxydocosapentaenoic acids (EDPs), limit mitochondrial damage after cardiac injury. In particular, the 19,20-EDP regioisomer has demonstrated potent cardioprotective action. Thus, we investigated our novel synthetic 19,20-EDP analog SA-22 for protection against cardiac ischemia-reperfusion (IR) injury. Isolated C57BL/6J mouse hearts were perfused through Langendorff apparatus for 20 minutes to obtain baseline function, followed by 30 minutes of global ischemia. Hearts were then treated with vehicle, 19,20-EDP, SA-22, or SA-22 with the pan-sirtuin inhibitor nicotinamide or the SIRT3-selective inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) at the start of 40 minutes reperfusion (N = 5-8). We assessed IR injury-induced changes in recovery of myocardial function, using left ventricular developed pressure and systolic and diastolic pressure change. Tissues were assessed for electron transport chain function, SIRT1 and SIRT3, optic atrophy type 1, and caspase-1. We also used H9c2 cells in an in vitro model of hypoxia/reoxygenation injury (N = 3-6). Hearts perfused with SA-22 had significantly improved postischemic left ventricular developed pressure, systolic and diastolic recovery (64% of baseline), compared with vehicle control (15% of baseline). In addition, treatment with SA-22 led to better catalytic function observed in electron transport chain and SIRT enzymes. The protective action of SA-22 resulted in reduced activation of pyroptosis in both hearts and cells after injury. Interestingly, although nicotinamide cotreatment worsened functional outcomes, cell survival, and attenuated sirtuin activity, it failed to completely attenuate SA-22-induced protection against pyroptosis, possibly indicating EDPs exert cytoprotection through pleiotropic mechanisms. In short, these data demonstrate the potential of our novel synthetic 19,20-EDP analog, SA-22, against IR/hypoxia-reoxygenation injury and justify further development of therapeutic agents based on 19,20-EDP.
Subject(s)
Sirtuin 3 , Mice , Animals , Mice, Inbred C57BL , Hypoxia , Ischemia , NiacinamideABSTRACT
BACKGROUND: SGLT2 (sodium/glucose cotransporter 2) inhibitors exert robust cardioprotective effects against heart failure in patients with diabetes, and there is intense interest to identify the underlying molecular mechanisms that afford this protection. Because the induction of the late component of the cardiac sodium channel current (late-INa) is involved in the etiology of heart failure, we investigated whether these drugs inhibit late-INa. METHODS: Electrophysiological, in silico molecular docking, molecular, calcium imaging, and whole heart perfusion techniques were used to address this question. RESULTS: The SGLT2 inhibitor empagliflozin reduced late-INa in cardiomyocytes from mice with heart failure and in cardiac Nav1.5 sodium channels containing the long QT syndrome 3 mutations R1623Q or ΔKPQ. Empagliflozin, dapagliflozin, and canagliflozin are all potent and selective inhibitors of H2O2-induced late-INa (half maximal inhibitory concentration = 0.79, 0.58, and 1.26 µM, respectively) with little effect on peak sodium current. In mouse cardiomyocytes, empagliflozin reduced the incidence of spontaneous calcium transients induced by the late-INa activator veratridine in a similar manner to tetrodotoxin, ranolazine, and lidocaine. The putative binding sites for empagliflozin within Nav1.5 were investigated by simulations of empagliflozin docking to a three-dimensional homology model of human Nav1.5 and point mutagenic approaches. Our results indicate that empagliflozin binds to Nav1.5 in the same region as local anesthetics and ranolazine. In an acute model of myocardial injury, perfusion of isolated mouse hearts with empagliflozin or tetrodotoxin prevented activation of the cardiac NLRP3 (nuclear-binding domain-like receptor 3) inflammasome and improved functional recovery after ischemia. CONCLUSIONS: Our results provide evidence that late-INa may be an important molecular target in the heart for the SGLT2 inhibitors, contributing to their unexpected cardioprotective effects.
Subject(s)
Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Sodium Channels/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Benzhydryl Compounds/therapeutic use , Glucosides/therapeutic use , Humans , Male , Mice , Sodium-Glucose Transporter 2 Inhibitors/therapeutic useABSTRACT
Myocardial infarction (MI) accounts for a significant proportion of death and morbidity in aged individuals. The risk for MI in females increases as they enter the peri-menopausal period, generally occurring in middle-age. Cytochrome (CYP) 450 metabolizes N-3 and N-6 polyunsaturated fatty acids (PUFA) into numerous lipid mediators, oxylipids, which are further metabolised by soluble epoxide hydrolase (sEH), reducing their activity. The objective of this study was to characterize oxylipid metabolism in the left ventricle (LV) following ischemic injury in females. Human LV specimens were procured from female patients with ischemic cardiomyopathy (ICM) or non-failing controls (NFC). Female C57BL6 (WT) and sEH null mice averaging 13-16 months old underwent permanent occlusion of the left anterior descending coronary artery (LAD) to induce myocardial infarction. WT (wild type) mice received vehicle or sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (tAUCB), in their drinking water ad libitum for 28 days. Cardiac function was assessed using echocardiography and electrocardiogram. Protein expression was determined using immunoblotting, mitochondrial activity by spectrophotometry, and cardiac fibre respiration was measured using a Clark-type electrode. A full metabolite profile was determined by LC-MS/MS. sEH was significantly elevated in ischemic LV specimens from patients, associated with fundamental changes in oxylipid metabolite formation and significant decreases in mitochondrial enzymatic function. In mice, pre-treatment with tAUCB or genetic deletion of sEH significantly improved survival, preserved cardiac function, and maintained mitochondrial quality following MI in female mice. These data indicate that sEH may be a relevant pharmacologic target for women with MI. Although future studies are needed to determine the mechanisms, in this pilot study we suggest targeting sEH may be an effective strategy for reducing ischemic injury and mortality in middle-aged females.
Subject(s)
Aging , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/physiology , Heart/drug effects , Myocardial Ischemia/prevention & control , Myocardial Reperfusion Injury/prevention & control , Animals , Case-Control Studies , Cytochrome P450 Family 2/physiology , Epoxide Hydrolases/antagonists & inhibitors , Female , Heart/physiopathology , Humans , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Ischemia/etiology , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Survival Rate , Tandem Mass SpectrometryABSTRACT
BACKGROUND: Glucose oxidation is a major contributor to myocardial energy production and its contribution is orchestrated by insulin. While insulin can increase glucose oxidation indirectly by enhancing glucose uptake and glycolysis, it also directly stimulates mitochondrial glucose oxidation, independent of increasing glucose uptake or glycolysis, through activating mitochondrial pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. However, how insulin directly stimulates PDH is not known. To determine this, we characterized the impacts of modifying mitochondrial insulin signaling kinases, namely protein kinase B (Akt), protein kinase C-delta (PKC-δ) and glycogen synthase kinase-3 beta (GSK-3ß), on the direct insulin stimulation of glucose oxidation. METHODS: We employed an isolated working mouse heart model to measure the effect of insulin on cardiac glycolysis, glucose oxidation and fatty acid oxidation and how that could be affected when mitochondrial Akt, PKC-δ or GSK-3ß is disturbed using pharmacological modulators. We also used differential centrifugation to isolate mitochondrial and cytosol fraction to examine the activity of Akt, PKC-δ and GSK-3ß between these fractions. Data were analyzed using unpaired t-test and two-way ANOVA. RESULTS: Here we show that insulin-stimulated phosphorylation of mitochondrial Akt is a prerequisite for transducing insulin's direct stimulation of glucose oxidation. Inhibition of mitochondrial Akt completely abolishes insulin-stimulated glucose oxidation, independent of glucose uptake or glycolysis. We also show a novel role of mitochondrial PKC-δ in modulating mitochondrial glucose oxidation. Inhibition of mitochondrial PKC-δ mimics insulin stimulation of glucose oxidation and mitochondrial Akt. We also demonstrate that inhibition of mitochondrial GSK3ß phosphorylation does not influence insulin-stimulated glucose oxidation. CONCLUSION: We identify, for the first time, insulin-stimulated mitochondrial Akt as a prerequisite transmitter of the insulin signal that directly stimulates cardiac glucose oxidation. These novel findings suggest that targeting mitochondrial Akt is a potential therapeutic approach to enhance cardiac insulin sensitivity in condition such as heart failure, diabetes and obesity.
Subject(s)
Energy Metabolism/drug effects , Glucose/metabolism , Insulin/pharmacology , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Animals , Female , Glycogen Synthase Kinase 3 beta/metabolism , Isolated Heart Preparation , Male , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Phosphorylation , Protein Kinase C-delta/metabolism , Proto-Oncogene Proteins c-akt/metabolismABSTRACT
NEW FINDINGS: What is the central question of the study? Does the action of l-citrulline, which has been shown to augment performance in animals and athletes, possibly via increasing mitochondrial function, translate to obese animals, and does this improve glycaemia? What is the main finding and its importance? Chronic supplementation with l-citrulline improves not only exercise capacity, but also glycaemia in obese mice, which would be beneficial as obese individuals are at increased risk for type 2 diabetes. However, l-citrulline supplementation also caused a mild impairment in insulin signalling and insulin tolerance in obese mice. ABSTRACT: l-Citrulline is an organic α-amino acid that has been shown to have a number of salutary actions on whole-body physiology, including reducing muscle wasting and augmenting exercise and muscle performance. The latter has been suggested to arise from elevations in mitochondrial function. Because enhancing mitochondrial function has been proposed as a novel strategy to mitigate insulin resistance, our goal was to determine whether supplementation with l-citrulline could also improve glycaemia in an experimental mouse model of obesity. We hypothesized that l-citrulline treatment would improve glycaemia in obese mice, and this would be associated with elevations in skeletal muscle mitochondrial function. Ten-week-old C57BL/6J mice were fed either a low-fat (10% kcal from lard) or a high-fat (60% kcal from lard) diet, while receiving drinking water supplemented with either vehicle or l-citrulline (0.6 g l-1 ) for 15 weeks. Glucose homeostasis was assessed via glucose/insulin tolerance testing, while in vivo metabolism was assessed via indirect calorimetry, and forced exercise treadmill testing was utilized to assess endurance. As expected, obese mice supplemented with l-citrulline exhibited an increase in exercise capacity, which was associated with an improvement in glucose tolerance. Consistent with augmented mitochondrial function, we observed an increase in whole body oxygen consumption rates in obese mice supplemented with l-citrulline. Surprisingly, l-citrulline supplementation worsened insulin tolerance and reduced insulin signalling in obese mice. Taken together, although l-citrulline supplementation improves both glucose tolerance and exercise capacity in obese mice, caution must be applied with its broad use as a nutraceutical due to a potential deterioration of insulin sensitivity.
Subject(s)
Blood Glucose/drug effects , Citrulline/pharmacology , Exercise Tolerance/drug effects , Obesity/drug therapy , Animals , Blood Glucose/metabolism , Citrulline/therapeutic use , Dietary Supplements , Dose-Response Relationship, Drug , Exercise Tolerance/physiology , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Obesity/metabolismABSTRACT
While survival rates have markedly improved following cardiac ischemia-reperfusion (IR) injury, the resulting heart damage remains an important issue. Preserving mitochondrial quality and limiting NLRP3 inflammasome activation is an approach to limit IR injury, in which the mitochondrial deacetylase sirtuin 3 (SIRT3) has a role. Recent data demonstrate cytochrome P450 (CYP450)-derived epoxy metabolites, epoxydocosapentaenoic acids (EDPs), of docosahexaenoic acid (DHA), attenuate cardiac IR injury. EDPs undergo rapid removal and inactivation by enzymatic and non-enzymatic processes. The current study hypothesizes that the cardioprotective effects of the synthetic EDP surrogates AS-27, SA-26 and AA-4 against IR injury involve activation of SIRT3. Isolated hearts from wild type (WT) mice were perfused in the Langendorff mode with vehicle, AS-27, SA-26 or AA-4. Improved postischemic functional recovery, maintained cardiac ATP levels, reduced oxidative stress and attenuation of NLRP3 activation were observed in hearts perfused with the analogue SA-26. Assessment of cardiac mitochondria demonstrated SA-26 preserved SIRT3 activity and reduced acetylation of manganese superoxide dismutase (MnSOD) suggesting enhanced antioxidant capacity. Together, these data demonstrate that the cardioprotective effects of the EDP analogue SA-26 against IR injury involve preservation of mitochondrial SIRT3 activity, which attenuates a detrimental innate NLRP3 inflammasome response.
Subject(s)
Docosahexaenoic Acids , Myocardial Reperfusion Injury , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Sirtuin 3/metabolism , Animals , Docosahexaenoic Acids/analogs & derivatives , Docosahexaenoic Acids/chemical synthesis , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/pharmacology , Female , Male , Mice , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathologyABSTRACT
Impaired mitochondrial function and activation of NLRP3 inflammasome cascade has a significant role in the pathogenesis of myocardial ischemia-reperfusion (IR) injury. The current study investigated whether eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or their corresponding CYP epoxygenase metabolites 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) protect against IR injury. Isolated mouse hearts were perfused in the Langendorff mode with vehicle, DHA, 19,20-EDP, EPA, or 17,18-EEQ and subjected to 30 min of ischemia and followed by 40 min of reperfusion. In contrast with EPA and 17,18-EEQ, DHA and 19,20-EDP exerted cardioprotection, as shown by a significant improvement in postischemic functional recovery associated with significant attenuation of NLRP3 inflammasome complex activation and preserved mitochondrial function. Hearts perfused with DHA or 19,20-EDP displayed a marked reduction in localization of mitochondrial Drp-1 and Mfn-2 as well as maintained Opa-1 levels. DHA and 19,20-EDP preserved the activities of both the cytosolic Trx-1 and mitochondrial Trx-2. DHA cardioprotective effect was attenuated by the CYP epoxygenase inhibitor N-(methysulfonyl)-2-(2-propynyloxy)-benzenehexanamide. In conclusion, our data indicate a differential cardioprotective response between DHA, EPA, and their active metabolites toward IR injury. Interestingly, 19,20-EDP provided the best protection against IR injury via maintaining mitochondrial function and thereby reducing the detrimental NLRP3 inflammasome responses.
Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , Epoxy Compounds/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cardiotonic Agents/metabolism , Cardiotonic Agents/pharmacology , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred C57BLABSTRACT
The role of carnitine acetyltransferase (CrAT) in regulating cardiac energy metabolism is poorly understood. CrAT modulates mitochondrial acetyl-CoA/CoA (coenzyme A) ratios, thus regulating pyruvate dehydrogenase activity and glucose oxidation. Here, we propose that cardiac CrAT also provides cytosolic acetyl-CoA for the production of malonyl-CoA, a potent inhibitor of fatty acid oxidation. We show that in the murine cardiomyocyte cytosol, reverse CrAT activity (RCrAT, producing acetyl-CoA) is higher compared with the liver, which primarily uses ATP-citrate lyase to produce cytosolic acetyl-CoA for lipogenesis. The heart displayed a lower RCrAT Km for CoA compared with the liver. Furthermore, cytosolic RCrAT accounted for 4.6 ± 0.7% of total activity in heart tissue and 12.7 ± 0.2% in H9C2 cells, while highly purified heart cytosolic fractions showed significant CrAT protein levels. To investigate the relationship between CrAT and acetyl-CoA carboxylase (ACC), the cytosolic enzyme catalyzing malonyl-CoA production from acetyl-CoA, we studied ACC2-knockout mouse hearts which showed decreased CrAT protein levels and activity, associated with increased palmitate oxidation and acetyl-CoA/CoA ratio compared with controls. Conversely, feeding mice a high-fat diet for 10 weeks increased cardiac CrAT protein levels and activity, associated with a reduced acetyl-CoA/CoA ratio and glucose oxidation. These data support the presence of a cytosolic CrAT with a low Km for CoA, favoring the formation of cytosolic acetyl-CoA, providing an additional source to the classical ATP-citrate lyase pathway, and that there is an inverse relation between CrAT and the ratio of acetyl-CoA/CoA as evident in conditions affecting the regulation of cardiac energy metabolism.
Subject(s)
Acetyl Coenzyme A/metabolism , Carnitine O-Acetyltransferase/physiology , Cytosol/metabolism , Energy Metabolism/genetics , Myocardium/metabolism , Animals , Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Cells, Cultured , Diet, High-Fat , Lipid Metabolism/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Oxidation-ReductionABSTRACT
Activation of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome cascade has a role in the pathogenesis of ischemia/reperfusion (IR) injury. There is growing evidence indicating cytochrome p450 (CYP450)-derived metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) possess both adverse and protective effects in the heart. CYP-derived epoxy metabolites are rapidly hydrolyzed by the soluble epoxide hydrolase (sEH). The current study hypothesized that the cardioprotective effects of inhibiting sEH involves limiting activation of the NLRP3 inflammasome. Isolated hearts from young wild-type (WT) and sEH null mice were perfused in the Langendorff mode with either vehicle or the specific sEH inhibitor t-AUCB. Improved post-ischemic functional recovery and better mitochondrial respiration were observed in both sEH null hearts or WT hearts perfused with t-AUCB. Inhibition of sEH markedly attenuated the activation of the NLRP3 inflammasome complex and limited the mitochondrial localization of the fission protein dynamin-related protein-1 (Drp-1) triggered by IR injury. Cardioprotective effects stemming from the inhibition of sEH included preserved activities of both cytosolic thioredoxin (Trx)-1 and mitochondrial Trx-2 antioxidant enzymes. Together, these data demonstrate that inhibiting sEH imparts cardioprotection against IR injury via maintaining post-ischemic mitochondrial function and attenuating a detrimental innate inflammatory response.
Subject(s)
Epoxide Hydrolases/genetics , Gene Deletion , Inflammasomes/metabolism , Myocardial Reperfusion Injury/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Epoxide Hydrolases/metabolism , Inflammasomes/genetics , Mice , Mice, Knockout , Mitochondria, Heart/enzymology , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocardium/enzymology , Myocardium/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/geneticsABSTRACT
Myocardial infarction (MI) is one of the main causes of morbidity and mortality in diabetic patients. The antidiabetic glucagon-like polypeptide-1 receptor (GLP-1R) agonists, such as exenatide, proved to confer cardioprotection; however, their exact mechanisms are not fully elucidated. Although the cardioprotective effect of α-estrogen receptor (ERα) activation is well established, its involvement in exenatide-induced cardioprotection has never been investigated. Moreover, modulation of insulin-like growth factor-1/2 (IGF-1/IGF-2) system by exenatide, and the consequent effect on cardiomyocyte apoptosis, is yet to be established. Current study aimed to investigate the cardioprotective potential of exenatide versus the standard cardioprotective agent, 17ß-estradiol, against isoprenaline (ISO)-induced MI in rats. MI-insulted group showed electrocardiographic abnormalities, elevated serum cardiac markers, higher serum IGF-2 level along with histopathological abnormalities. Treatment with exenatide and/or 17ß-estradiol, commenced 8 weeks before ISO insult, ameliorated these anomalies with maximum cardioprotection achieved with combined treatment. This was associated with upregulation of both ERα and IGF-1R, and downregulation of IGF-2R in left ventricles. Inhibition of ERs in Langendorff preparations confirmed their involvement in mediating exenatide-induced cardioprotective effect. Current study showed that the GLP-1R agonist exenatide exerted cardioprotection associated with upregulation of ERα and modulation of IGF-1/IGF-2 signaling in favor of antiapoptosis.
Subject(s)
Estrogen Receptor alpha/metabolism , Exenatide/pharmacology , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor I/metabolism , Isoproterenol , Myocardial Infarction/prevention & control , Myocardium/metabolism , Animals , Apoptosis/drug effects , Cytoprotection , Disease Models, Animal , Estradiol/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Heart Rate/drug effects , Isolated Heart Preparation , Male , Myocardial Infarction/chemically induced , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Rats, Wistar , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects , Ventricular Function, Left/drug effectsABSTRACT
Background Identifying new therapeutic targets for preventing the myocardial ischemia-reperfusion injury would have profound implications in cardiovascular medicine. Myocardial ischemia-reperfusion injury remains a major clinical burden in patients with coronary artery disease. Methods and Results We studied several key mechanistic pathways known to mediate cardioprotection in myocardial ischemia-reperfusion in 2 independent genetic models with reduced cardiac phosphoinositide 3-kinase-α (PI3Kα) activity. P3Kα-deficient genetic models (PI3KαDN and PI3Kα-Mer-Cre-Mer) showed profound resistance to myocardial ischemia-reperfusion injury. In an ex vivo reperfusion protocol, PI3Kα-deficient hearts had an 80% recovery of function compared with ≈10% recovery in the wild-type. Using an in vivo reperfusion protocol, PI3Kα-deficient hearts showed a 40% reduction in infarct size compared with wild-type hearts. Lack of PI3Kα increased late Na+ current, generating an influx of Na+, facilitating the lowering of mitochondrial Ca2+, thereby maintaining mitochondrial membrane potential and oxidative phosphorylation. Consistent with these functional differences, mitochondrial structure in PI3Kα-deficient hearts was preserved following ischemia-reperfusion injury. Computer modeling predicted that PIP3, the product of PI3Kα action, can interact with the murine and human NaV1.5 channels binding to the hydrophobic pocket below the selectivity filter and occluding the channel. Conclusions Loss of PI3Kα protects from global ischemic-reperfusion injury linked to improved mitochondrial structure and function associated with increased late Na+ current. Our results strongly support enhancement of mitochondrial function as a therapeutic strategy to minimize ischemia-reperfusion injury.
Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Mice , Animals , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Myocardial Ischemia/drug therapy , Mitochondria/metabolism , Coronary Artery Disease/metabolism , Mitochondria, Heart/metabolismABSTRACT
INTRODUCTION: Cytochrome P450s (CYPs) are a superfamily of monooxygenases with diverse biological roles. CYP2J2 is an isozyme highly expressed in the heart where it metabolizes endogenous substrates such as N-3/N-6 polyunsaturated fatty acids (PUFA) to produce lipid mediators involved in homeostasis and cardioprotective responses. Expanding our knowledge of the role CYP2J2 has within the heart is important for understanding its impact on cardiac health and disease. AREAS COVERED: The objective of this review was to assess the state of knowledge regarding cardiac CYP2J2. A literature search was conducted using PubMed-MEDLINE (from 2022 and earlier) to evaluate relevant studies regarding CYP2J2-mediated cardioprotection, small molecule modulators, effects of CYP2J2 substrates toward biologically relevant effects and implications of CYP2J2 polymorphisms and sexual dimorphism in the heart. EXPERT OPINION: Cardiac CYP2J2-mediated metabolism of endogenous and exogenous substrates have been shown to impact cardiac function. Identifying individual factors, like sex and age, that affect CYP2J2 require further elucidation to better understand CYP2J2's clinical relevance. Resolving the biological targets and activities of CYP2J2-derived PUFA metabolites will be necessary to safely target CYP2J2 and design novel analogues. Targeting CYP2J2 for therapeutic aims offers a potential novel approach to regulating cardiac homeostasis, drug metabolism and cardioprotection.
Subject(s)
Cytochrome P-450 CYP2J2 , Myocytes, Cardiac , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Humans , Inactivation, Metabolic , Polymorphism, GeneticABSTRACT
Objective: Metabolites derived from N-3 and N-6 polyunsaturated fatty acids (PUFAs) have both beneficial and detrimental effects on the heart. However, contribution of these lipid mediators to dilated cardiomyopathy (DCM)-associated mitochondrial dysfunction remains unknown. This study aimed to characterize DCM-specific alterations in the PUFA metabolome in conjunction with cardiac mitochondrial quality in human explanted heart tissues. Methods: Left ventricular tissues obtained from non-failing control (NFC) or DCM explanted hearts, were assessed for N-3 and N-6 PUFA metabolite levels using LC-MS/MS. mRNA and protein expression of CYP2J2, CYP2C8 and epoxide hydrolase enzymes involved in N-3 and N-6 PUFA metabolism were quantified. Cardiac mitochondrial quality was assessed by transmission electron microscopy, measurement of respiratory chain complex activities and oxygen consumption (respiratory control ratio, RCR) during ADP-stimulated ATP production. Results: Formation of cardioprotective CYP-derived lipid mediators, epoxy fatty acids (EpFAs), and their corresponding diols were enhanced in DCM hearts. These findings were corroborated by increased expression of CYP2J2 and CYP2C8 enzymes, as well as microsomal and soluble epoxide hydrolase enzymes, suggesting enhanced metabolic flux and EpFA substrate turnover. DCM hearts demonstrated marked damage to mitochondrial ultrastructure and attenuated mitochondrial function. Incubation of fresh DCM cardiac fibers with the protective EpFA, 19,20-EDP, significantly improved mitochondrial function. Conclusions: The current study demonstrates that increased expressions of CYP-epoxygenase enzymes and epoxide hydrolases in the DCM heart correspond with enhanced PUFA-derived EpFA turnover. This is accompanied by severe mitochondrial functional impairment which can be rescued by the administration of exogenous EpFAs.
ABSTRACT
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has currently led to a global pandemic with millions of confirmed and increasing cases around the world. The novel SARS-CoV-2 not only affects the lungs causing severe acute respiratory dysfunction but also leads to significant dysfunction in multiple organs and physiological systems including the cardiovascular system. A plethora of studies have shown the viral infection triggers an exaggerated immune response, hypercoagulation and oxidative stress, which contribute significantly to poor cardiovascular outcomes observed in COVID-19 patients. To date, there are no approved vaccines or therapies for COVID-19. Accordingly, cardiovascular protective and supportive therapies are urgent and necessary to the overall prognosis of COVID-19 patients. Accumulating literature has demonstrated the beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFA) toward the cardiovascular system, which include ameliorating uncontrolled inflammatory reactions, reduced oxidative stress and mitigating coagulopathy. Moreover, it has been demonstrated the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors to a group of potent bioactive lipid mediators, generated endogenously, which mediate many of the beneficial effects attributed to their parent compounds. Considering the favorable safety profile for n-3 PUFAs and their metabolites, it is reasonable to consider n-3 PUFAs as potential adjuvant therapies for the clinical management of COVID-19 patients. In this article, we provide an overview of the pathogenesis of cardiovascular complications secondary to COVID-19 and focus on the mechanisms that may contribute to the likely benefits of n-3 PUFAs and their metabolites.
Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Fatty Acids, Omega-3/administration & dosage , Animals , COVID-19/diagnosis , Cardiovascular Diseases/diagnosis , Chemotherapy, Adjuvant/methods , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Humans , Oxidative Stress/drug effects , Oxidative Stress/physiology , Randomized Controlled Trials as Topic/methodsABSTRACT
Age-associated changes leading to a decline in cardiac structure and function contribute to the increased susceptibility and incidence of cardiovascular diseases (CVD) in elderly individuals. Indeed, age is considered a risk factor for heart failure and serves as an important predictor for poor prognosis in elderly individuals. Effects stemming from chronic, low-grade inflammation, inflammaging, are considered important determinants in cardiac health; however, our understanding of the mechanisms involved remains unresolved. A steady decline in mitochondrial function is recognized as an important biological consequence found in the aging heart which contributes to the development of heart failure. Dysfunctional mitochondria contribute to increased cellular stress and an innate immune response by activating the NLRP-3 inflammasomes, which have a role in inflammaging and age-related CVD pathogenesis. Emerging evidence suggests a protective role for CYP450 epoxygenase metabolites of N-3 and N-6 polyunsaturated fatty acids (PUFA), epoxylipids, which modulate various aspects of the immune system and protect mitochondria. In this article, we provide insight into the potential roles N-3 and N-6 PUFA have modulating mitochondria, inflammaging and heart failure.
Subject(s)
Heart Failure/immunology , Heart Failure/metabolism , Animals , Cardiovascular Diseases/blood , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Epoxy Resins/metabolism , Fatty Acids, Unsaturated/blood , Heart Failure/blood , Humans , Immunity, Innate/physiology , Inflammasomes/metabolism , Inflammasomes/physiology , Inflammation/blood , Inflammation/immunology , Inflammation/metabolism , Mitochondria/metabolism , Mitochondria/physiologyABSTRACT
Biological aging is an inevitable part of life that has intrigued individuals for millennia. The progressive decline in biological systems impacts cardiac function and increases vulnerability to stress contributing to morbidity and mortality in aged individuals. Yet, our understanding of the molecular, biochemical and physiological mechanisms of aging as well as sex differences is limited. There is growing evidence indicating CYP450 epoxygenase-mediated metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) are active lipid mediators regulating cardiac homeostasis. These epoxy metabolites are rapidly hydrolyzed and inactivated by the soluble epoxide hydrolase (sEH). The current study characterized cardiac function in young and aged sEH null mice compared to the corresponding wild-type (WT) mice. All aged mice had significantly increased cardiac hypertrophy, except in aged female sEH null mice. Cardiac function as assessed by echocardiography demonstrated a marked decline in aged WT mice, notably significant decreases in ejection fraction and fractional shortening in both sexes. Interestingly, aged female sEH null mice had preserved systolic function, while aged male sEH null mice had preserved diastolic function compared to aged WT mice. Assessment of cardiac mitochondria demonstrated an increased expression of acetyl Mn-SOD levels that correlated with decreased Sirt-3 activity in aged WT males and females. Conversely, aged sEH null mice had preserved Sirt-3 activity and better mitochondrial ultrastructure compared to WT mice. Consistent with these changes, the activity level of SOD significantly decreased in WT animals but was preserved in aged sEH null animals. Markers of oxidative stress demonstrated age-related increase in protein carbonyl levels in WT and sEH null male mice. Together, these data highlight novel cardiac phenotypes from sEH null mice demonstrating a sexual dimorphic pattern of aging in the heart.
ABSTRACT
BACKGROUND: Although empagliflozin was shown to profoundly reduce cardiovascular events in diabetic patients and blunt the decline in cardiac function in nondiabetic mice with established heart failure (HF), the mechanism of action remains unknown. METHODS AND RESULTS: We treated 2 rodent models of HF with 10 mg/kg per day empagliflozin and measured activation of the NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome in the heart. We show for the first time that beneficial effects of empagliflozin in HF with reduced ejection fraction (HF with reduced ejection fraction [HFrEF]; n=30-34) occur in the absence of changes in circulating ketone bodies, cardiac ketone oxidation, or increased cardiac ATP production. Of note, empagliflozin attenuated activation of the NLRP3 inflammasome and expression of associated markers of sterile inflammation in hearts from mice with HFrEF, implicating reduced cardiac inflammation as a mechanism of empagliflozin that contributes to sustained function in HFrEF in the absence of diabetes mellitus. In addition, we validate that the beneficial cardiac effects of empagliflozin in HF with preserved ejection fraction (HFpEF; n=9-10) are similarly associated with reduced activation of the NLRP3 inflammasome. Lastly, the ability of empagliflozin to reduce inflammation was completely blunted by a calcium (Ca2+) ionophore, suggesting that empagliflozin exerts its benefit upon restoring optimal cytoplasmic Ca2+ levels in the heart. CONCLUSIONS: These data provide evidence that the beneficial cardiac effects of empagliflozin are associated with reduced cardiac inflammation via blunting activation of the NLRP3 inflammasome in a Ca2+-dependent manner and hence may be beneficial in treating HF even in the absence of diabetes mellitus.
Subject(s)
Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Heart Failure/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Stroke Volume/drug effects , Animals , Carrier Proteins/metabolism , Heart Diseases/drug therapy , Heart Failure/physiopathology , Inflammasomes/drug effects , Inflammasomes/metabolism , Male , Mice, Inbred C57BL , Nucleotides/metabolism , Stroke Volume/physiologyABSTRACT
BACKGROUND: Previous studies have shown beneficial effects of acute infusion of the primary ketone body, ß-hydroxybutyrate, in heart failure (HF). However, whether chronic elevations in circulating ketones are beneficial remains unknown. METHODS: To chronically elevate circulating ketones in mice, we deleted the expression of the ketolytic, rate-limiting-enzyme, SCOT (succinyl-CoA:3-ketoacid-CoA transferase 1; encoded by Oxct1), in skeletal muscle. Tamoxifen-inducible skeletal muscle-specific Oxct1Muscle-/- knockout (n=32) mice and littermate controls (wild type; WT; n=35) were subjected to transverse aortic constriction (TAC) surgery to induce HF. RESULTS: Deletion of SCOT in skeletal, but not cardiac muscle resulted in elevated concentrations of fasted circulating ß-hydroxybutyrate in knockout mice compared with WT mice (P=0.030). Five weeks following TAC, WT mice progressed to HF, whereas knockout mice with elevated fasting circulating ketones were largely protected from the TAC-induced effects observed in WT mice (ejection fraction, P=0.011; mitral E/A, P=0.012). Furthermore, knockout mice with TAC had attenuated expression of markers of sterile inflammation and macrophage infiltration, which were otherwise elevated in WT mice subjected to TAC. Lastly, addition of ß-hydroxybutyrate to isolated hearts was associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3)-inflammasome activation, which has been previously shown to play a role in contributing to HF-induced cardiac inflammation. CONCLUSIONS: These data show that chronic elevation of circulating ketones protects against the development of HF that is associated with the ability of ß-hydroxybutyrate to directly reduce inflammation. These beneficial effects of ketones were associated with reduced cardiac NLRP3 inflammasome activation, suggesting that ketones may modulate cardiac inflammation via this mechanism.