Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Am Chem Soc ; 140(38): 12137-12143, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30169023

ABSTRACT

The rapid emergence of antibiotic-resistant bacterial "superbugs" with concomitant treatment failure and high mortality rates presents a severe threat to global health. The superbug risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that render them refractory to available treatments. We hypothesized that efficient antimicrobial agents could be generated through careful engineering of hydrophobic and cationic domains in a synthetic semirigid polymer scaffold, mirroring and amplifying attributes of antimicrobial peptides. We report the creation of polymeric nanoparticles with highly efficient antimicrobial properties. These nanoparticles eradicate biofilms with low toxicity to mammalian cells and feature unprecedented therapeutic indices against red blood cells. Most notably, bacterial resistance toward these nanoparticles was not observed after 20 serial passages, in stark contrast to clinically relevant antibiotics where significant resistance occurred after only a few passages.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Nanoparticles/chemistry , Polymers/pharmacology , Quaternary Ammonium Compounds/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Enterobacter cloacae/drug effects , Erythrocytes/drug effects , Escherichia coli/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Nanoparticles/toxicity , Polymers/chemical synthesis , Polymers/chemistry , Polymers/toxicity , Pseudomonas aeruginosa/drug effects , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/toxicity
2.
Small ; 14(7)2018 02.
Article in English | MEDLINE | ID: mdl-29271047

ABSTRACT

A modular strategy for the solubilization and protection of hydrophobic transition metal catalysts using the hydrophobic pockets of water soluble gold nanoparticles is reported. Besides preserving original catalyst activity, this encapsulation strategy provides a protective environment for the hydrophobic catalyst and brings reusability. This system provides a versatile platform for the encapsulation of different hydrophobic transition metal catalysts, allowing a wide range of catalysis in water while uniting the advantages of homogeneous and heterogeneous catalysis in the same system.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Catalysis , Hydrophobic and Hydrophilic Interactions
3.
Tetrahedron Lett ; 56(23): 3653-3657, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26074630

ABSTRACT

Host-guest interactions between a synthetic receptor, cucurbit[7]uril (CB[7]), and gold nanoparticles (AuNPs) have been quantified using isothermal titration calorimetry. AuNPs were functionalized with ligands containing tertiary or quaternary benzylamine derivatives, with electron donating or withdrawing groups at the para position of the benzene ring. Analysis of binding interactions reveals that functional groups at the para position have no significant effect on binding constant. However, headgroups bearing a permanent positive charge increased the binding of AuNPs to CB[7] ten-fold compared to monomethyl counterparts.

4.
Small Methods ; : e2400633, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039995

ABSTRACT

Lipid nanoparticles encapsulating mRNA (LNP-mRNA) revolutionized medicine over the past several years. While clinically approved indications currently focus on infectious disease vaccination, LNP-mRNA based treatments also hold promise for cancer immunotherapy. However, the route of dosing may impact treatment efficacy, safety, and dose. To minimize adverse effects, it is hypothesized that LNP-mRNA can be used to activate and engineer dendritic cells (DC) ex vivo before re-administration of these cells. Here, it is shown that LNP-mRNA engineered DCs can indeed vaccinate recipient mice. Vaccinated mice showed strong anti-tumor T cell responses, rejected tumor challenge, and displayed no evidence of toxicity. Further, it is found that DC specific ablation of the immune activating kinase NFkB inducing kinase (NIK) abrogated vaccination efficacy, demonstrating that adoptively transferred DCs can be functionally modified in addition to their antigen presentation capacity. Collectively, these studies show that ex vivo LNP-mRNA engineering of DCs is a feasible and robust therapeutic strategy for cancer.

5.
Macromol Biosci ; 24(3): e2300365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37840462

ABSTRACT

Transdermal drug delivery offers a promising alternative to traditional methods such as oral ingestion and hypodermic injection. Hypodermic injections are painful, while oral ingestion requires higher doses due to enzymatic degradation and poor absorption. While microneedles address the pain issue, they are limited to delivering small amounts of drugs and can be impractical due to peeling off with motion and sweat. Herein, this work proposes soft injectables using drug-carrying sutures for painless and localized sustained delivery in the dermis. These sutures can remain in place during delivery and are suitable for all skin types. Surgical sutures can also serve as open capillary microfluidic channels carrying drug from a wearable drug reservoir to enable long-term (weeks to months) transdermal drug delivery. The experiments focus on delivering 5-fluorouracil (5-FU), a cancer drug, and rhodamine B, a drug model. A fixed-length suture of 60 cm delivers 0.43 mg of 5-flurouracil in 15 min. The experiments also demonstrate a continuous drug delivery of rhodamine B for over 8 weeks at a rate of 0.0195 mL h-1 . The results highlight that soft injectable sutures are promising candidates for long-term sustained delivery of varying quantities of drugs over weeks period compared to hypodermic injection, oral ingestion, or microneedles.


Subject(s)
Drug Delivery Systems , Sutures , Administration, Cutaneous , Drug Delivery Systems/methods
6.
Adv Sci (Weinh) ; 10(33): e2303576, 2023 11.
Article in English | MEDLINE | ID: mdl-37814359

ABSTRACT

The efficient activation of professional antigen-presenting cells-such as dendritic cells (DC)-in tumors and lymph nodes is critical for the design of next-generation cancer vaccines and may be able to provide anti-tumor effects by itself through immune stimulation. The challenge is to stimulate these cells without causing excessive toxicity. It is hypothesized that a multi-pronged combinatorial approach to DC stimulation would allow dose reductions of innate immune receptor-stimulating TLR3 agonists while enhancing drug efficacy. Here, a hybrid lipid nanoparticle (LNP) platform is developed and tested for double-stranded RNA (polyinosinic:polycytidylic acid for TLR3 agonism) and immune modulator (L-CANDI) delivery. This study shows that the ≈120 nm hybrid nanoparticles-in-nanoparticles effectively eradicate tumors by themselves and generate long-lasting, durable anti-tumor immunity in mouse models.


Subject(s)
Cancer Vaccines , Neoplasms , Animals , Mice , Toll-Like Receptor 3 , Poly I-C/pharmacology , Neoplasms/pathology , Dendritic Cells
7.
APL Bioeng ; 6(2): 021505, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35783456

ABSTRACT

Wearables have garnered significant attention in recent years not only as consumer electronics for entertainment, communications, and commerce but also for real-time continuous health monitoring. This has been spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices to replace the traditional, bulky, and rigid electronic devices. However, engineering smart wearables that can seamlessly integrate with the human body is a daunting task. Some of the key material attributes that are challenging to meet are skin conformability, breathability, and biocompatibility while providing tunability of its mechanical, electrical, and chemical properties. Electrospinning has emerged as a versatile platform that can potentially address these challenges by fabricating nanofibers with tunable properties from a polymer base. In this article, we review advances in wearable electronic devices and systems that are developed using electrospinning. We cover various applications in multiple fields including healthcare, biomedicine, and energy. We review the ability to tune the electrical, physiochemical, and mechanical properties of the nanofibers underlying these applications and illustrate strategies that enable integration of these nanofibers with human skin.

8.
JACS Au ; 2(7): 1679-1685, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35911454

ABSTRACT

Macrophages migrate to tumor sites by following chemoattractant gradients secreted by tumor cells, providing a truly active targeting strategy for cancer therapy. However, macrophage-based delivery faces challenges of cargo loading, control of release, and effects of the payload on the macrophage vehicle. We present a strategy that employs bioorthogonal "nanozymes" featuring transition metal catalysts (TMCs) to provide intracellular "factories" for the conversion of prodyes and prodrugs into imaging agents and chemotherapeutics. These nanozymes solubilize and stabilize the TMCs by embedding them into self-assembled monolayer coating gold nanoparticles. Nanozymes delivered into macrophages were intracellularly localized and retained activity even after prolonged (72 h) incubation. Significantly, nanozyme-loaded macrophages maintained their inherent migratory ability toward tumor cell chemoattractants, efficiently killing cancer cells in cocultures. This work establishes the potential of nanozyme-loaded macrophages for tumor site activation of prodrugs, providing readily tunable dosages and delivery rates while minimizing off-target toxicity of chemotherapeutics.

9.
Adv Drug Deliv Rev ; 168: 99-117, 2021 01.
Article in English | MEDLINE | ID: mdl-32931860

ABSTRACT

Genome-editing tools such as Cre recombinase (Cre), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biomedical research, agriculture, microbial engineering, and therapeutic development. Direct delivery of genome editing enzymes, as opposed to their corresponding DNA and mRNA precursors, is advantageous since they do not require transcription and/or translation. In addition, prolonged overexpression is a problem when delivering viral vector or plasmid DNA which is bypassed when delivering whole proteins. This lowers the risk of insertional mutagenesis and makes for relatively easier manufacturing. However, a major limitation of utilizing genome editing proteins in vivo is their low delivery efficiency, and currently the most successful strategy involves using potentially immunogenic viral vectors. This lack of safe and effective non-viral delivery systems is still a big hurdle for the clinical translation of such enzymes. This review discusses the challenges of non-viral delivery strategies of widely used genome editing enzymes, including Cre recombinase, ZFNs and TALENs, CRISPR/Cas9, and Cas12a (Cpf1) in their protein format and highlights recent innovations of non-viral delivery strategies which have the potential to overcome current delivery limitations and advance the clinical translation of genome editing.


Subject(s)
Gene Editing/methods , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Bacterial Proteins/administration & dosage , CRISPR-Associated Proteins/administration & dosage , Clustered Regularly Interspaced Short Palindromic Repeats , Dendrimers/chemistry , Endodeoxyribonucleases/administration & dosage , Gold/chemistry , Integrases/administration & dosage , Lipids/chemistry , Nanoparticles/chemistry , Phosphorus/chemistry , Polyethyleneimine/chemistry , Transcription Activator-Like Effector Nucleases/administration & dosage , Zinc Finger Nucleases/administration & dosage
10.
J Nucl Med ; 62(4): 457-461, 2021 04.
Article in English | MEDLINE | ID: mdl-33384322

ABSTRACT

Reactive oxygen species (ROS) play a pivotal role in many cellular processes and can be either beneficial or harmful. The design of ROS-sensitive fluorophores has allowed for imaging of specific activity and has helped elucidate mechanisms of action for ROS. Understanding the oxidative role of ROS in the many roles it plays allows us to understand the human body. This review provides a concise overview of modern advances in the field of ROS imaging. Indeed, much has been learned about the role of ROS throughout the years; however, it has recently been shown that using nanoparticles, rather than individual small organic fluorophores, for ROS imaging can further our understanding of ROS.


Subject(s)
Molecular Imaging/methods , Reactive Oxygen Species/metabolism , Humans
11.
Mater Horiz ; 8(12): 3424-3431, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34700339

ABSTRACT

Bioorthogonal transformation of imaging and therapeutic substrates using transition metal catalysts (TMCs) provides a toolkit with diverse applications in biomedicine. Controlled localization of bioorthogonal catalysis is key for enhancing their therapeutic efficacy by minimizing off-target effects. Red blood cells (RBCs) are highly biocompatible and are susceptible to hemolysis by bacterial toxins, providing them with intrinsic targeting to bacterial infections. A hitchhiking strategy using RBCs is reported, that activates bioorthogonal catalysis at infection sites. A library of nanoparticles embedded with TMCs (nanozymes) featuring diverse functional groups with different binding ability to RBCs is generated. These engineered nanozymes bind to RBCs and subsequently release upon hemolysis by bacterial toxins, resulting in selective accumulation at the site of bacterial infections. The antimicrobial action is specific: catalytic activation of pro-antibiotics eradicated pathogenic biofilms without harming non-virulent bacterial species.


Subject(s)
Bacterial Infections , Nanoparticles , Transition Elements , Bacterial Infections/drug therapy , Catalysis , Erythrocytes , Humans
12.
Adv Ther (Weinh) ; 3(7)2020 Jul.
Article in English | MEDLINE | ID: mdl-35531049

ABSTRACT

The emergence of multi-drug resistant pathogenic bacteria constitutes a key threat to global health. Infections caused by multi-drug resistant Gram-negative bacteria are particularly challenging to treat due to the ability of pathogens to prevent antibiotic penetration inside the bacterial membrane. Antibiotic therapy is further rendered ineffective due to biofilm formation where the protective Extracellular Polymeric Substance (EPS) matrix limits the diffusion of antibiotics inside the biofilm. We hypothesized that careful engineering of chemical groups on polymer scaffolds could enable polymers to penetrate the barriers of Gram-negative bacterial membrane and biofilm matrix. Here, we present the use of engineered polymeric nanoparticles in combination with antibiotics for synergistic antimicrobial therapy. These polymeric nanoparticles enhance the accumulation of antibiotics inside Gram-negative bacteria and biofilm matrix, resulting in increased potency of antibiotics in combination therapy. Sub-lethal concentrations of engineered polymeric nanoparticles reduce the antibiotic dosage by 32-fold to treat MDR bacteria and biofilms. Tailoring of chemical groups on polymers demonstrate a strong-structure activity relationship in generating additive and synergistic combinations with antibiotics. This study demonstrates the ability of polymeric nanoparticles to 'rejuvenate' antibiotics rendered ineffective by resistant bacteria and provides a rationale to design novel compounds to achieve effective antimicrobial combination therapies.

13.
ACS Nano ; 13(1): 229-235, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30516966

ABSTRACT

Bioorthogonal transformation of prodrugs and profluorophores using transition metal catalysts (TMCs) offers a promising strategy for therapeutic and imaging applications. Here, we report the surface engineering of nanoparticles to specifically localize gold nanoparticles (AuNPs) with encapsulated TMCs (nanozymes) to either the inside or outside of cells. The ability to control nanozyme localization and hence activity was demonstrated by the activation of pro-fluorophores and prodrugs intra- and extracellularly, establishing the potential of engineered nanozyme platforms for both diagnostic and therapeutic purposes.


Subject(s)
Cell Membrane/metabolism , Cytochrome P450 Family 1/metabolism , Metal Nanoparticles/chemistry , Animals , Biocatalysis , Cell Membrane Permeability , Cells , Cytochrome P450 Family 1/administration & dosage , Gold/chemistry , HeLa Cells , Humans , Mice , RAW 264.7 Cells
14.
Adv Ther (Weinh) ; 2(10)2019 Oct.
Article in English | MEDLINE | ID: mdl-34095457

ABSTRACT

Macrophages are key effectors of host defense and metabolism, making them promising targets for transient genetic therapy. Gene editing through delivery of the Cas9-ribonucleoprotein (RNP) provides multiple advantages over gene delivery-based strategies for introducing CRISPR machinery to the cell. There are, however, significant physiological, cellular, and intracellular barriers to the effective delivery of the Cas9 protein and guide RNA (sgRNA) that have to date, restricted in vivo Cas9 protein-based approaches to local/topical delivery applications. Herein we describe a new nanoassembled platform featuring co-engineered nanoparticles and Cas9 protein that has been developed to provide efficient Cas9-sgRNA delivery and concomitant CRISPR editing through systemic tail-vein injection into mice, achieving >8% gene editing efficiency in macrophages of the liver and spleen.

15.
ACS Nano ; 12(1): 89-94, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29244484

ABSTRACT

Early detection of biofilms is crucial for limiting infection-based damage. Imaging these biofilms is challenging: conventional imaging agents are unable to penetrate the dense matrix of the biofilm, and many imaging agents are susceptible to false positive/negative responses due to phenotypical mutations of the constituent microbes. We report the creation of pH-responsive nanoparticles with embedded transition metal catalysts (nanozymes) that effectively target the acidic microenvironment of biofilms. These pH-switchable nanozymes generate imaging agents through bioorthogonal activation of profluorophores inside biofilms. The specificity of these nanozymes for imaging biofilms in complex biosystems was demonstrated using coculture experiments.


Subject(s)
Biofilms , Escherichia coli/physiology , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Optical Imaging/methods , Ruthenium/chemistry , Alkadienes/chemistry , Animals , Catalysis , Escherichia coli/isolation & purification , Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Humans , Hydrogen-Ion Concentration , Ions/chemistry , Mice , Microscopy, Confocal/methods , NIH 3T3 Cells
16.
ACS Omega ; 3(12): 16721-16727, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-30613808

ABSTRACT

Bacterial multidrug resistance (MDR) is a serious healthcare issue caused by the long-term subtherapeutic clinical treatment of infectious diseases. Nanoscale engineering of metal nanoparticles has great potential to address this issue by tuning the nano-bio interface to target bacteria. Herein, we report the use of branched polyethylenimine-functionalized silver nanoclusters (bPEI-Ag NCs) to selectively kill MDR pathogenic bacteria by combining the antimicrobial activity of silver with the selective toxicity of bPEI toward bacteria. The minimum inhibitory concentration of bPEI-Ag NCs was determined against 12 uropathogenic MDR strains and found to be 10- to 15-fold lower than that of PEI and 2- to 3-fold lower than that of AgNO3 alone. Cell viability and hemolysis assays demonstrated the biocompatibility of bPEI-Ag NCs with human fibroblasts and red blood cells, with selective toxicity against MDR bacteria.

17.
J Control Release ; 283: 235-240, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29883695

ABSTRACT

The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Nanocapsules/administration & dosage , RNA, Small Interfering/administration & dosage , Tumor Necrosis Factor-alpha/genetics , Animals , Cytosol , Female , Gene Silencing , Mice , Mice, Inbred BALB C , RAW 264.7 Cells
18.
ACS Nano ; 11(1): 946-952, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28005325

ABSTRACT

Infections caused by bacterial biofilms are an emerging threat to human health. Conventional antibiotic therapies are ineffective against biofilms due to poor penetration of the extracellular polymeric substance secreted by colonized bacteria coupled with the rapidly growing number of antibiotic-resistant strains. Essential oils are promising natural antimicrobial agents; however, poor solubility in biological conditions limits their applications against bacteria in both dispersed (planktonic) and biofilm settings. We report here an oil-in-water cross-linked polymeric nanocomposite (∼250 nm) incorporating carvacrol oil that penetrates and eradicates multidrug-resistant (MDR) biofilms. The therapeutic potential of these materials against challenging wound biofilm infections was demonstrated through specific killing of bacteria in a mammalian cell-biofilm coculture wound model.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cross-Linking Reagents/pharmacology , Nanocomposites/chemistry , Polymers/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Cross-Linking Reagents/chemical synthesis , Cross-Linking Reagents/chemistry , Dose-Response Relationship, Drug , Enterobacter cloacae/drug effects , Enterobacter cloacae/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Polymers/chemical synthesis , Polymers/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Structure-Activity Relationship
19.
Mol Syst Des Eng ; 2(5): 624-628, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29430303

ABSTRACT

The inclusion of transition metal catalysts into nanoparticle scaffolds permits the creation of catalytic nanosystems (nanozymes) able to imitate the behaviour of natural enzymes. Here we report the fabrication of a family of nanozymes comprised of bioorthogonal ruthenium catalysts inserted in the protective monolayer of gold nanoparticles. By introducing simple modifications to the functional groups at the surface of the nanozymes, we have demonstrated control over the kinetic mechanism of our system. Cationic nanozymes with hydrophobic surface functionalities tend to replicate the classical Michaelis Menten model, while those with polar groups display substrate inhibition behaviour, a key mechanism present in 20 % of natural enzymes. The structural parameters described herein can be used for creating artificial nanosystems that mimic the complexity observed in cell machinery.

20.
ACS Nano ; 10(5): 5293-303, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27135862

ABSTRACT

This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are ∼3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 kΩ/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials.

SELECTION OF CITATIONS
SEARCH DETAIL