Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Pharm Res ; 33(5): 1115-25, 2016 May.
Article in English | MEDLINE | ID: mdl-26786016

ABSTRACT

PURPOSE: Antibiotic dose predictions based on PK/PD indices rely on that the index type and magnitude is insensitive to the pharmacokinetics (PK), the dosing regimen, and bacterial susceptibility. In this work we perform simulations to challenge these assumptions for meropenem and Pseudomonas aeruginosa. METHODS: A published murine dose fractionation study was replicated in silico. The sensitivity of the PK/PD index towards experimental design, drug susceptibility, uncertainty in MIC and different PK profiles was evaluated. RESULTS: The previous murine study data were well replicated with fT > MIC selected as the best predictor. However, for increased dosing frequencies fAUC/MIC was found to be more predictive and the magnitude of the index was sensitive to drug susceptibility. With human PK fT > MIC and fAUC/MIC had similar predictive capacities with preference for fT > MIC when short t1/2 and fAUC/MIC when long t1/2. CONCLUSIONS: A longitudinal PKPD model based on in vitro data successfully predicted a previous in vivo study of meropenem. The type and magnitude of the PK/PD index were sensitive to the experimental design, the MIC and the PK. Therefore, it may be preferable to perform simulations for dose selection based on an integrated PK-PKPD model rather than using a fixed PK/PD index target.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Thienamycins/pharmacology , Thienamycins/pharmacokinetics , Animals , Anti-Bacterial Agents/therapeutic use , Computer Simulation , Dose-Response Relationship, Drug , Female , Humans , Male , Meropenem , Mice , Microbial Sensitivity Tests , Models, Biological , Pseudomonas aeruginosa/growth & development , Thienamycins/therapeutic use
2.
Antibiotics (Basel) ; 13(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38247631

ABSTRACT

Antibiotic development traditionally involved large Phase 3 programs, preceded by Phase 2 studies. Recognizing the high unmet medical need for new antibiotics and, in some cases, challenges to conducting large clinical trials, regulators created a streamlined clinical development pathway in which a lean clinical efficacy dataset is complemented by nonclinical data as supportive evidence of efficacy. In this context, translational Pharmacokinetic/Pharmacodynamic (PK/PD) plays a key role and is a major contributor to a "robust" nonclinical package. The classical PK/PD index approach, proven successful for established classes of antibiotics, is at the core of recent antibiotic approvals and the current antibacterial PK/PD guidelines by regulators. Nevertheless, in the case of novel antibiotics with a novel Mechanism of Action (MoA), there is no prior experience with the PK/PD index approach as the basis for translating nonclinical efficacy to clinical outcome, and additional nonclinical studies and PK/PD analyses might be considered to increase confidence. In this review, we discuss the value and limitations of the classical PK/PD approach and present potential risk mitigation activities, including the introduction of a semi-mechanism-based PK/PD modeling approach. We propose a general nonclinical PK/PD package from which drug developers might choose the studies most relevant for each individual candidate in order to build up a "robust" nonclinical PK/PD understanding.

3.
Drug Discov Today ; 27(6): 1604-1621, 2022 06.
Article in English | MEDLINE | ID: mdl-35304340

ABSTRACT

Many in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing a drug's disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience are reviewed here. Each area has specific challenges around translatability and determination of an efficacious dose: new patient-specific dosing methods may help overcome these limitations.


Subject(s)
Drugs, Investigational , Medical Oncology , Animals , Models, Biological
4.
Bioorg Med Chem Lett ; 21(21): 6554-8, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21924610

ABSTRACT

We herein report the discovery of a new γ-secretase modulator class with an aminothiazole core starting from a HTS hit (3). Synthesis and SAR of this series are discussed. These novel compounds demonstrate moderate to good in vitro potency in inhibiting amyloid beta (Aß) peptide production. Overall γ-secretase is not inhibited but the formation of the aggregating, toxic Aß42 peptide is shifted to smaller non-aggregating Aß peptides. Compound 15 reduced brain Aß42 in vivo in APPSwe transgenic mice at 30mg/kg p.o.


Subject(s)
Amyloid Precursor Protein Secretases/drug effects , Thiazoles/pharmacology , Animals , Humans , Mice , Mice, Transgenic , Structure-Activity Relationship , Thiazoles/chemistry
5.
J Med Chem ; 51(7): 2115-27, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18335976

ABSTRACT

The application of the evolutionary fragment-based de novo design tool TOPology Assigning System (TOPAS), starting from a known CB1R (CB-1 receptor) ligand, followed by further refinement principles, including pharmacophore compliance, chemical tractability, and drug likeness, allowed the identification of benzodioxoles as a novel CB1R inverse agonist series. Extensive multidimensional optimization was rewarded by the identification of promising lead compounds, showing in vivo activity. These compounds reversed the CP-55940-induced hypothermia in Naval Medical Research Institute (NMRI) mice and reduced body-weight gain, as well as fat mass, in diet-induced obese Sprague-Dawley rats. Herein, we disclose the tools and strategies that were employed for rapid hit identification, synthesis and generation of structure-activity relationships, ultimately leading to the identification of (+)-[( R)-2-(2,4-dichloride-phenyl)-6-fluoro-2-(4-fluoro-phenyl)-benzo[1,3]dioxol-5-yl]-morpholin-4-yl-methanone ( R)-14g . Biochemical, pharmacokinetic, and pharmacodynamic characteristics of ( R)-14g are discussed.


Subject(s)
Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/pharmacology , Benzodioxoles/administration & dosage , Benzodioxoles/pharmacology , Obesity/drug therapy , Receptor, Cannabinoid, CB1/agonists , Animals , Anti-Obesity Agents/chemistry , Benzodioxoles/chemical synthesis , Benzodioxoles/chemistry , Body Weight/drug effects , Crystallography, X-Ray , Cyclohexanols/antagonists & inhibitors , Cyclohexanols/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Design , Humans , Hypothermia/chemically induced , Ligands , Male , Mice , Microsomes/drug effects , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 18(1): 304-8, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17983746

ABSTRACT

A hydroxamic acid screening hit 1 was elaborated to 5,5-dimethyl-2-oxoazepane derivatives exhibiting low nanomolar inhibition of gamma-secretase, a key proteolytic enzyme involved in Alzheimer's disease. Early ADME data showed a high metabolic clearance for the geminal dimethyl analogs which could be overcome by replacement with the bioisosteric geminal difluoro group. Synthesis and structure-activity relationship are discussed and in vivo active compounds are presented.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Azepines/chemistry , Azepines/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Animals , Azepines/chemical synthesis , Humans , Hydroxamic Acids/chemistry , Mice , Mice, Transgenic , Models, Molecular , Protease Inhibitors/chemical synthesis , Structure-Activity Relationship
7.
Eur J Pharm Biopharm ; 63(3): 347-55, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16621491

ABSTRACT

Hepatocyte assays, routinely used to assess the metabolic stability of new chemical entities, were recently improved by using hepatocytes in suspension instead of primary cultures [N. Blanchard, L. Richert, B. Notter, F. Delobel, P. David, P. Coassolo, T. Lavé, Impact of serum on clearance predictions obtained from suspensions and primary cultures of rat hepatocytes, Eur. J. Pharm. Sci. 23 (2004) 189-199]. The aim of the present study was to investigate miniaturising the suspension assay by using cryopreserved human hepatocytes, i.e., 150,000 cells/well in 96-well plates, to predict hepatic clearance (CLH) in order to increase compound throughput and decrease cost and tissue requirements. For this, an evaluation was first carried out with rat hepatocytes. Then, human hepatocytes from various donors were used under these predetermined conditions, either immediately after isolation, either after a 20-h-cold storage period in UW or after cryopreservation. The values of CLint and CLH determined using human hepatocytes in suspension in 96-well plates, immediately after isolation, after cold storage or after cryopreservation, were comparable to those obtained with hepatocytes in primary culture. In particular, the use of cryopreserved human hepatocytes in suspension in a 96-well format appeared to be largely satisfactory as a tool for screening and ranking of compounds in the early phase of the drug discovery process.


Subject(s)
Cryopreservation , Hepatocytes/metabolism , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Metabolic Clearance Rate , Middle Aged , Rats , Rats, Wistar , Suspensions
8.
J Med Chem ; 59(13): 6086-100, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27299419

ABSTRACT

Spinal muscular atrophy (SMA) is the leading genetic cause of infant and toddler mortality, and there is currently no approved therapy available. SMA is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. These mutations or deletions result in low levels of functional SMN protein. SMN2, a paralogous gene to SMN1, undergoes alternative splicing and exclusion of exon 7, producing an unstable, truncated SMNΔ7 protein. Herein, we report the identification of a pyridopyrimidinone series of small molecules that modify the alternative splicing of SMN2, increasing the production of full-length SMN2 mRNA. Upon oral administration of our small molecules, the levels of full-length SMN protein were restored in two mouse models of SMA. In-depth lead optimization in the pyridopyrimidinone series culminated in the selection of compound 3 (RG7800), the first small molecule SMN2 splicing modifier to enter human clinical trials.


Subject(s)
Alternative Splicing/drug effects , Muscular Atrophy, Spinal/drug therapy , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , RNA, Messenger/genetics , Survival of Motor Neuron 2 Protein/genetics , Animals , Exons/drug effects , Humans , Mice , Muscular Atrophy, Spinal/genetics , Pyrimidinones/pharmacokinetics , Pyrimidinones/therapeutic use
9.
J Med Chem ; 56(10): 3980-95, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23590342

ABSTRACT

An extensive fluorine scan of 1,3-oxazines revealed the power of fluorine(s) to lower the pKa and thereby dramatically change the pharmacological profile of this class of BACE1 inhibitors. The CF3 substituted oxazine 89, a potent and highly brain penetrant BACE1 inhibitor, was able to reduce significantly CSF Aß40 and 42 in rats at oral doses as low as 1 mg/kg. The effect was long lasting, showing a significant reduction of Aß40 and 42 even after 24 h. In contrast to 89, compound 1b lacking the CF3 group was virtually inactive in vivo.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Animals , Brain Chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Female , Fluorine/chemistry , Humans , Indicators and Reagents , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Molecular , Oxazines/chemical synthesis , Oxazines/pharmacology , Rats , Rats, Wistar , Structure-Activity Relationship , X-Ray Diffraction
10.
Bioorg Med Chem Lett ; 17(21): 5918-23, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17869099

ABSTRACT

Structural modifications of the gamma-secretase inhibitor, LY411575, led to a malonamide analogue (S),(S)-1 with potent inhibitory activity in vitro, but disappointing activity in a mouse model of Alzheimer's disease. Identification and replacement of a metabolically labile position provided an improved compound (R/S),(S)-13 with high in vitro activity (IC(50)=1.7 nM), and in vivo activity after oral administration (MED=3 mg/kg). Further modifications gave an equipotent carbamate analogue 14 with improved molecular properties.


Subject(s)
Alanine/analogs & derivatives , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Azepines/pharmacology , Enzyme Inhibitors/pharmacology , Administration, Oral , Alanine/chemistry , Alanine/pharmacology , Animals , Azepines/administration & dosage , Azepines/chemistry , Chromatography, High Pressure Liquid , Mice , Mice, Transgenic , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL