Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Respir Res ; 24(1): 198, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37568151

ABSTRACT

BACKGROUND: The primary underlying defect in cystic fibrosis (CF) is disrupted ion transport in epithelia throughout the body. It is unclear if symptoms such as airway hyperreactivity (AHR) and increased airway smooth muscle (ASM) volume in people with CF are due to inherent abnormalities in smooth muscle or are secondary to epithelial dysfunction. Transforming Growth Factor beta 1 (TGFß) is an established genetic modifier of CF lung disease and a known driver of abnormal ASM function. Prior studies have demonstrated that CF mice develop greater AHR, goblet cell hyperplasia, and ASM hypertrophy after pulmonary TGFß exposure. However, the mechanism driving these abnormalities in CF lung disease, specifically the contribution of CFTR loss in ASM, was unknown. METHODS: In this study, mice with smooth muscle-specific loss of CFTR function (Cftrfl/fl; SM-Cre mice) were exposed to pulmonary TGFß. The impact on lung pathology and physiology was investigated through examination of lung mechanics, Western blot analysis, and pulmonary histology. RESULTS: Cftrfl/fl; SM-Cre mice treated with TGFß demonstrated greater methacholine-induced AHR than control mice. However, Cftrfl/fl; SM-Cre mice did not develop increased inflammation, ASM area, or goblet cell hyperplasia relative to controls following TGFß exposure. CONCLUSIONS: These results demonstrate a direct smooth muscle contribution to CF airway obstruction mediated by TGFß. Dysfunction in non-epithelial tissues should be considered in the development of CF therapeutics, including potential genetic therapies.


Subject(s)
Asthma , Cystic Fibrosis , Animals , Mice , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Hyperplasia/metabolism , Hyperplasia/pathology , Muscle, Smooth/metabolism , Transforming Growth Factor beta/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L137-L147, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32159969

ABSTRACT

Neutrophil extracellular traps (NETs) provide host defense but can contribute to the pathobiology of diverse human diseases. We sought to determine the extent and mechanism by which NETs contribute to human airway cell inflammation. Primary normal human bronchial epithelial cells (HBEs) grown at air-liquid interface and wild-type (wt)CFBE41o- cells (expressing wtCFTR) were exposed to cell-free NETs from unrelated healthy volunteers for 18 h in vitro. Cytokines were measured in the apical supernatant by Luminex, and the effect on the HBE transcriptome was assessed by RNA sequencing. NETs consistently stimulated IL-8, TNF-α, and IL-1α secretion by HBEs from multiple donors, with variable effects on other cytokines (IL-6, G-CSF, and GM-CSF). Expression of HBE RNAs encoding IL-1 family cytokines, particularly IL-36 subfamily members, was increased in response to NETs. NET exposure in the presence of anakinra [recombinant human IL-1 receptor antagonist (rhIL-1RA)] dampened NET-induced changes in IL-8 and TNF-α proteins as well as IL-36α RNA. rhIL-36RA limited the increase in expression of proinflammatory cytokine RNAs in HBEs exposed to NETs. NETs selectively upregulate an IL-1 family cytokine response in HBEs, which enhances IL-8 production and is limited by rhIL-1RA. The present findings describe a unique mechanism by which NETs may contribute to inflammation in human lung disease in vivo. NET-driven IL-1 signaling may represent a novel target for modulating inflammation in diseases characterized by a substantial NET burden.


Subject(s)
Bronchi/cytology , Epithelial Cells/metabolism , Extracellular Traps/metabolism , Interleukin-1/metabolism , Interleukin-8/metabolism , Adult , Cell Line , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Leukocyte Elastase/metabolism , Peroxidase/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Transcription, Genetic/drug effects
3.
Am J Physiol Lung Cell Mol Physiol ; 312(4): L488-L499, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28130263

ABSTRACT

Pulmonary fibrosis contributes to morbidity and mortality in a range of diseases, and there are no approved therapies for reversing its progression. To understand the mechanisms underlying pulmonary fibrosis and assess potential therapies, mouse models are central to basic and translational research. Unfortunately, metrics commonly used to assess murine pulmonary fibrosis require animals to be grouped and euthanized, increasing experimental difficulty and cost. We examined the ability of magnetic resonance imaging (MRI) to noninvasively assess lung fibrosis progression and resolution in a doxycycline (Dox) regulatable, transgenic mouse model that overexpresses transforming growth factor-α (TGF-α) under control of a lung-epithelial-specific promoter. During 7 wk of Dox treatment, fibrotic lesions were readily observed as high-signal tissue. Mean weighted signal and percent signal volume were found to be the most robust MRI-derived measures of fibrosis, and these metrics correlated significantly with pleural thickness, histology scores, and hydroxyproline content (R = 0.75-0.89). When applied longitudinally, percent high signal volume increased by 1.5% wk-1 (P < 0.001) and mean weighted signal increased at a rate of 0.0065 wk-1 (P = 0.0062). Following Dox treatment, lesions partially resolved, with percent high signal volume decreasing by -3.2% wk-1 (P = 0.0034) and weighted mean signal decreasing at -0.015 wk-1 (P = 0.0028). Additionally, longitudinal MRI revealed dynamic remodeling in a subset of lesions, a previously unobserved behavior in this model. These results demonstrate MRI can noninvasively assess experimental lung fibrosis progression and resolution and provide unique insights into its pathobiology.


Subject(s)
Disease Progression , Magnetic Resonance Imaging/methods , Pulmonary Fibrosis/pathology , Animals , Disease Models, Animal , Hydroxyproline/metabolism , Imaging, Three-Dimensional , Mice , Mice, Transgenic , Transforming Growth Factor alpha/pharmacology
4.
Am J Respir Cell Mol Biol ; 55(6): 792-803, 2016 12.
Article in English | MEDLINE | ID: mdl-27438654

ABSTRACT

The p70 ribosomal S6 kinase (p70S6K) is a downstream substrate that is phosphorylated and activated by the mammalian target of rapamycin complex and regulates multiple cellular processes associated with pulmonary fibrogenesis. Two isoforms of the p70S6K have been identified (S6K1 and S6K2), but their relative contributions in mediating pulmonary fibrosis are unknown. To interrogate the roles of the p70S6K isoforms, we overexpressed transforming growth factor (TGF)-α in mice deficient for the S6K1 or S6K2 genes and measured changes in lung histology, morphometry, total lung collagen, lung function, and proliferation between wild-type and isoform-deficient mice. Deficiency of S6K1, but not S6K2, had a significant effect on reducing proliferation in subpleural fibrotic lesions during TGF-α-induced fibrosis. Migration was significantly decreased in mesenchymal cells isolated from the lungs of S6K1 knockout mice compared with wild-type or S6K2 knockout mice. Conversely, increases in subpleural thickening were significantly decreased in S6K2-deficient mice compared with wild type. Deficiency of S6K2 significantly reduced phosphorylation of the downstream S6 ribosomal protein in lung homogenates and isolated mesenchymal cells after TGF-α expression. However, deficiency of neither isoform alone significantly altered TGF-α-induced collagen accumulation or lung function decline in vivo. Furthermore, deficiency in neither isoform prevented changes in collagen accumulation or lung compliance decline after administration of intradermal bleomycin. Together, these findings demonstrate that the p70S6K isoforms have unique and redundant functions in mediating fibrogenic processes, including proliferation, migration, and S6 phosphorylation, signifying that both isoforms must be targeted to modulate p70S6K-mediated pulmonary fibrosis.


Subject(s)
Cell Movement , Mesoderm/pathology , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/pathology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Animals , Bleomycin , Cell Proliferation , Collagen/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Isoenzymes/metabolism , Ki-67 Antigen/metabolism , Lung/metabolism , Lung/pathology , Lung/physiopathology , Mice, Transgenic , Phosphorylation , Pulmonary Fibrosis/physiopathology , Ribosomal Protein S6 Kinases, 70-kDa/deficiency , Signal Transduction , Transforming Growth Factor alpha/metabolism
5.
Am J Respir Cell Mol Biol ; 41(5): 562-72, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19244201

ABSTRACT

Transforming growth factor (TGF)-alpha is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. Overexpression of TGF-alpha in transgenic mice causes progressive and severe pulmonary fibrosis; however, the intracellular signaling pathways downstream of EGFR mediating this response are unknown. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we observed increased PCNA protein and phosphorylation of Akt and p70S6K in whole lung homogenates in association with induction of TGF-alpha. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over a 7-week period. Daily administration of rapamycin prevented accumulation of total lung collagen, weight loss, and changes in pulmonary mechanics. Treatment of mice with rapamycin 4 weeks after the induction of TGF-alpha prevented additional weight loss, increases in total collagen, and changes in pulmonary mechanics. Rapamycin prevented further increases in established pulmonary fibrosis induced by EGFR activation. This study demonstrates that mammalian target of rapamycin (mTOR) is a major effector of EGFR-induced pulmonary fibrosis, providing support for further studies to determine the role of mTOR in the pathogenesis and treatment of pulmonary fibrosis.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Lung/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Pulmonary Fibrosis/prevention & control , Signal Transduction/drug effects , Sirolimus/pharmacology , Transforming Growth Factor alpha/metabolism , Animals , Carrier Proteins/metabolism , Collagen/metabolism , Disease Models, Animal , Disease Progression , Doxycycline/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Erlotinib Hydrochloride , Gene Expression Regulation , Humans , Lung/enzymology , Lung/physiopathology , Mice , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/physiopathology , Quinazolines/pharmacology , Respiratory Mechanics/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases , Time Factors , Transforming Growth Factor alpha/genetics , Uteroglobin/genetics
6.
BMC Evol Biol ; 5: 3, 2005 Jan 05.
Article in English | MEDLINE | ID: mdl-15634358

ABSTRACT

BACKGROUND: How does intraspecific variation relate to macroevolutionary change in morphology? This question can be addressed in species in which derived characters are present but not fixed. In rhabditid nematodes, the arrangement of the nine bilateral pairs of peripheral sense organs (rays) in tails of males is often the most highly divergent character between species. The development of ray pattern involves inputs from hometic gene expression patterns, TGFbeta signalling, Wnt signalling, and other genetic pathways. In Caenorhabditis briggsae, strain-specific variation in ray pattern has provided an entree into the evolution of ray pattern. Some strains were fixed for a derived pattern. Other strains were more plastic and exhibited derived and ancestral patterns at equal frequencies. RESULTS: Recombinant inbred lines (RILs) constructed from crosses between the variant C. briggsae AF16 and HK104 strains exhibited a wide range of phenotypes including some that were more extreme than either parental strain. Transgressive segregation was significantly associated with allelic variation in the C. briggsae homolog of abdominal B, Cb-egl-5. At least two genes that affected different elements of ray pattern, ray position and ray fusion, were linked to a second gene, mip-1. Consistent with this, the segregation of ray position and ray fusion phenotypes were only partially correlated in the RILs. CONCLUSIONS: The evolution of ray pattern has involved allelic variation at multiple loci. Some of these loci impact the specification of ray identities and simultaneously affect multiple ray pattern elements. Others impact individual characters and are not constrained by covariance with other ray pattern elements. Among the genetic pathways that may be involved in ray pattern evolution is specification of anteroposterior positional information by homeotic genes.


Subject(s)
Caenorhabditis/genetics , Caenorhabditis/physiology , Evolution, Molecular , Alleles , Animals , Body Patterning , Caenorhabditis elegans Proteins/genetics , Calmodulin-Binding Proteins/genetics , Crosses, Genetic , DNA Primers/chemistry , Female , Gene Expression Regulation , Genetic Variation , Male , Models, Genetic , Models, Statistical , Muscle Proteins/genetics , Phenotype , Polymerase Chain Reaction , Sex Factors , Signal Transduction , Species Specificity , Transforming Growth Factor beta/metabolism
7.
Pulm Med ; 2011: 653524, 2011.
Article in English | MEDLINE | ID: mdl-21660239

ABSTRACT

Injury to the distal respiratory epithelium has been implicated as an underlying cause of idiopathic lung diseases. Mutations that result in SP-C deficiencies are linked to a small subset of spontaneous and familial cases of interstitial lung disease (ILD) and interstitial pulmonary fibrosis (IPF). Gene-targeted mice that lack SP-C (Sftpc(-/-)) develop an irregular ILD-like disease with age and are a model of the human SP-C related disease. In the current study, we investigated whether rapamycin could ameliorate bleomycin-induced fibrosis in the lungs of Sftpc(-/-) mice. Sftpc(+/+) and -/- mice were exposed to bleomycin with either preventative administration of rapamycin or therapeutic administration beginning eight days after the bleomycin injury. Rapamycin-treatment increased weight loss and decreased survival of bleomycin-treated Sftpc(+/+) and Sftpc(-/-) mice. Rapamycin did not reduce the fibrotic disease in the prophylactic or rescue experiments of either genotype of mice. Further, rapamycin treatment augmented airway resistance and reduced lung compliance of bleomycin-treated Sftpc(-/-) mice. Rapamycin treatment was associated with an increased expression of profibrotic Th2 cytokines and reduced expression of INF-γ. These findings indicate that novel therapeutics will be required to treat individuals with SP-C deficient ILD/IPF.

SELECTION OF CITATIONS
SEARCH DETAIL