Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
Add more filters

Publication year range
1.
Nature ; 618(7963): 159-168, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225977

ABSTRACT

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Subject(s)
Nerve Regeneration , Humans , Neoplasms/drug therapy , Nerve Regeneration/drug effects , Protein Isoforms/agonists , Signal Transduction/drug effects , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/drug effects , Cardiotonic Agents/pharmacology , Animals , Biocatalysis/drug effects , Protein Conformation/drug effects , Neurites/drug effects , Reperfusion Injury/prevention & control , Nerve Crush , Cell Proliferation/drug effects
2.
Pharmacol Rev ; 75(1): 159-216, 2023 01.
Article in English | MEDLINE | ID: mdl-36753049

ABSTRACT

Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.


Subject(s)
Ischemic Postconditioning , Ischemic Preconditioning, Myocardial , Myocardial Ischemia , Myocardial Reperfusion Injury , Animals , Humans , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Ischemia/drug therapy , Myocardial Ischemia/prevention & control , Risk Factors , Heart Disease Risk Factors , Ischemia
3.
BMC Geriatr ; 24(1): 190, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408948

ABSTRACT

BACKGROUND: Populations are ageing globally and Low- and Middle-Income Countries (LMICs) are experiencing the fastest rates of demographic change. Few studies have explored the burden of frailty amongst older people in hospital in LMICs, where healthcare services are having to rapidly adapt to align with the needs of older people. This study aimed to measure the prevalence of frailty amongst older people admitted to hospital in Tanzania and to explore their demographic and clinical characteristics. METHODS: This study had a prospective observational design. Over a six-month period, all adults ≥ 60 years old admitted to medical wards in four hospitals in northern Tanzania were invited to participate. They were screened for frailty using the Clinical Frailty Scale (CFS) and the Frailty Phenotype (FP). Demographic and clinical characteristics of interest were recorded in a structured questionnaire. These included the Barthel Index, the Identification of Elderly Africans Instrumental Activities of Daily Living (IADEA-IADL) and Cognitive (IDEA-Cog) screens, the EURO-D depression scale and Confusion Assessment Method. RESULTS: 540 adults aged ≥ 60 were admitted, and 308 completed assessment. Frailty was present in 66.6% using the CFS and participants with frailty were significantly older, with lower levels of education and literacy, greater disability, greater comorbidity, poorer cognition and higher levels of delirium. Using the FP, 57.0% of participants were classed as frail though a majority of participants (n = 159, 51.6%) could not be classified due to a high proportion of missing data. CONCLUSIONS: This study indicates that the prevalence of frailty on medical wards in northern Tanzania is high according to the CFS. However, the challenges in operationalising the FP in this setting highlight the need for future work to adapt frailty screening tools for an African context. Future investigations should also seek to correlate frailty status with long-term clinical outcomes after admission in this setting.


Subject(s)
Frailty , Aged , Humans , Frailty/diagnosis , Frailty/epidemiology , Frailty/psychology , Frail Elderly/psychology , Activities of Daily Living , Tanzania/epidemiology , Geriatric Assessment/methods , Hospitals
4.
Eur Heart J ; 44(2): 100-112, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36337034

ABSTRACT

The use of biomarkers is undisputed in the diagnosis of primary myocardial infarction (MI), but their value for identifying MI is less well studied in the postoperative phase following coronary artery bypass grafting (CABG). To identify patients with periprocedural MI (PMI), several conflicting definitions of PMI have been proposed, relying either on cardiac troponin (cTn) or the MB isoenzyme of creatine kinase, with or without supporting evidence of ischaemia. However, CABG inherently induces the release of cardiac biomarkers, as reflected by significant cTn concentrations in patients with uncomplicated postoperative courses. Still, the underlying (patho)physiological release mechanisms of cTn are incompletely understood, complicating adequate interpretation of postoperative increases in cTn concentrations. Therefore, the aim of the current review is to present these potential underlying mechanisms of cTn release in general, and following CABG in particular (Graphical Abstract). Based on these mechanisms, dissimilarities in the release of cTnI and cTnT are discussed, with potentially important implications for clinical practice. Consequently, currently proposed cTn biomarker cut-offs by the prevailing definitions of PMI might warrant re-assessment, with differentiation in cut-offs for the separate available assays and surgical strategies. To resolve these issues, future prospective studies are warranted to determine the prognostic influence of biomarker release in general and PMI in particular.


Subject(s)
Coronary Artery Bypass , Myocardial Infarction , Humans , Coronary Artery Bypass/adverse effects , Myocardial Infarction/etiology , Troponin I , Troponin T , Biomarkers
5.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673737

ABSTRACT

Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.


Subject(s)
Heart Transplantation , Humans , Heart Transplantation/methods , Organ Preservation/methods , Tissue and Organ Procurement/methods , Animals , Perfusion/methods , Tissue Donors , Energy Metabolism
6.
Basic Res Cardiol ; 118(1): 22, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37233787

ABSTRACT

Ischaemic heart disease, which often manifests clinically as myocardial infarction (MI), remains a major cause of mortality worldwide. Despite the development of effective pre-clinical cardioprotective therapies, clinical translation has been disappointing. Nevertheless, the 'reperfusion injury salvage kinase' (RISK) pathway appears to be a promising target for cardioprotection. This pathway is crucial for the induction of cardioprotection by numerous pharmacological and non-pharmacological interventions, such as ischaemic conditioning. An important component of the cardioprotective effects of the RISK pathway involves the prevention of mitochondrial permeability transition pore (MPTP) opening and subsequent cardiac cell death. Here, we will review the historical perspective of the RISK pathway and focus on its interaction with mitochondria in the setting of cardioprotection.


Subject(s)
Ischemic Preconditioning, Myocardial , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Permeability Transition Pore/pharmacology , Myocardial Ischemia/prevention & control , Myocardial Ischemia/metabolism , Mitochondria/metabolism , Mitochondria, Heart/metabolism
7.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Article in English | MEDLINE | ID: mdl-36889041

ABSTRACT

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , COVID-19 , Humans , Lipoproteins, LDL , Biomarkers , Lysophosphatidylcholines
8.
Cardiovasc Drugs Ther ; 36(6): 1221-1238, 2022 12.
Article in English | MEDLINE | ID: mdl-35171384

ABSTRACT

Aspirin loading (chewable or intravenous) as soon as possible after presentation is a class I recommendation by current ST elevation myocardial infarction (STEMI) guidelines. Earlier achievement of therapeutic antiplatelet effects by aspirin loading has long been considered the standard of care. However, the effects of the loading dose of aspirin (alone or in addition to a chronic maintenance oral dose) have not been studied. A large proportion of myocardial cell death occurs upon and after reperfusion (reperfusion injury). Numerous agents and interventions have been shown to limit infarct size in animal models when administered before or immediately after reperfusion. However, these interventions have predominantly failed to show significant protection in clinical studies. In the current review, we raise the hypothesis that aspirin loading may be the culprit. Data obtained from animal models consistently show that statins, ticagrelor, opiates, and ischemic postconditioning limit myocardial infarct size. In most of these studies, aspirin was not administered. However, when aspirin was administered before reperfusion (as is the case in the majority of studies enrolling STEMI patients), the protective effects of statin, ticagrelor, morphine, and ischemic postconditioning were attenuated, which can be plausibly attributable to aspirin loading. We therefore suggest studying the effects of aspirin loading before reperfusion on the infarct size limiting effects of statins, ticagrelor, morphine, and/ or postconditioning in large animal models using long reperfusion periods (at least 24 h). If indeed aspirin attenuates the protective effects, clinical trials should be conducted comparing aspirin loading to alternative antiplatelet regimens without aspirin loading in patients with STEMI undergoing primary percutaneous coronary intervention.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Animals , ST Elevation Myocardial Infarction/therapy , Aspirin , Ticagrelor , Percutaneous Coronary Intervention/adverse effects , Morphine Derivatives , Treatment Outcome
9.
Cardiovasc Drugs Ther ; 36(5): 925-930, 2022 10.
Article in English | MEDLINE | ID: mdl-34169381

ABSTRACT

PURPOSE: Coronavirus disease 19 (COVID-19) has, to date, been diagnosed in over 130 million persons worldwide and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several variants of concern have emerged including those in the United Kingdom, South Africa, and Brazil. SARS-CoV-2 can cause a dysregulated inflammatory response known as a cytokine storm, which can progress rapidly to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Suppressing these cytokine elevations may be key to improving outcomes. Remote ischemic conditioning (RIC) is a simple, non-invasive procedure whereby a blood pressure cuff is inflated and deflated on the upper arm for several cycles. "RIC in COVID-19" is a pilot, multi-center, randomized clinical trial, designed to ascertain whether RIC suppresses inflammatory cytokine production. METHODS: A minimum of 55 adult patients with diagnosed COVID-19, but not of critical status, will be enrolled from centers in the United Kingdom, Brazil, and South Africa. RIC will be administered daily for up to 15 days. The primary outcome is the level of inflammatory cytokines that are involved in the cytokine storm that can occur following SARS-CoV-2 infection. The secondary endpoint is the time between admission and until intensive care admission or death. The in vitro cytotoxicity of patient blood will also be assessed using primary human cardiac endothelial cells. CONCLUSIONS: The results of this pilot study will provide initial evidence on the ability of RIC to suppress the production of inflammatory cytokines in the setting of COVID-19. TRIAL REGISTRATION: NCT04699227, registered January 7th, 2021.


Subject(s)
COVID-19 , Adult , Critical Care , Cytokine Release Syndrome/prevention & control , Cytokines , Endothelial Cells , Humans , Pilot Projects , SARS-CoV-2 , Treatment Outcome
10.
Article in English | MEDLINE | ID: mdl-36445625

ABSTRACT

PURPOSE: Patients hospitalized with COVID-19 may develop a hyperinflammatory, dysregulated cytokine "storm" that rapidly progresses to acute respiratory distress syndrome, multiple organ dysfunction, and even death. Remote ischaemic conditioning (RIC) has elicited anti-inflammatory and cytoprotective benefits by reducing cytokines following sepsis in animal studies. Therefore, we investigated whether RIC would mitigate the inflammatory cytokine cascade induced by COVID-19. METHODS: We conducted a prospective, multicentre, randomized, sham-controlled, single-blind trial in Brazil and South Africa. Non-critically ill adult patients with COVID-19 pneumonia were randomly allocated (1:1) to receive either RIC (intermittent ischaemia/reperfusion applied through four 5-min cycles of inflation (20 mmHg above systolic blood pressure) and deflation of an automated blood-pressure cuff) or sham for approximately 15 days. Serum was collected following RIC/sham administration and analyzed for inflammatory cytokines using flow cytometry. The endpoint was the change in serum cytokine concentrations. Participants were followed for 30 days. RESULTS: Eighty randomized participants (40 RIC and 40 sham) completed the trial. Baseline characteristics according to trial intervention were overall balanced. Despite downward trajectories of all cytokines across hospitalization, we observed no substantial changes in cytokine concentrations after successive days of RIC. Time to clinical improvement was similar in both groups (HR 1.66; 95% CI, 0.938-2.948, p 0.08). Overall RIC did not demonstrate a significant impact on the composite outcome of all-cause death or clinical deterioration (HR 1.19; 95% CI, 0.616-2.295, p = 0.61). CONCLUSION: RIC did not reduce the hypercytokinaemia induced by COVID-19 or prevent clinical deterioration to critical care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04699227.

11.
Eur Heart J ; 42(27): 2630-2642, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34059914

ABSTRACT

A substantial number of chronic coronary syndrome (CCS) patients undergoing percutaneous coronary intervention (PCI) experience periprocedural myocardial injury or infarction. Accurate diagnosis of these PCI-related complications is required to guide further management given that their occurrence may be associated with increased risk of major adverse cardiac events (MACE). Due to lack of scientific data, the cut-off thresholds of post-PCI cardiac troponin (cTn) elevation used for defining periprocedural myocardial injury and infarction, have been selected based on expert consensus opinions, and their prognostic relevance remains unclear. In this Consensus Document from the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI), we recommend, whenever possible, the measurement of baseline (pre-PCI) cTn and post-PCI cTn values in all CCS patients undergoing PCI. We confirm the prognostic relevance of the post-PCI cTn elevation >5× 99th percentile URL threshold used to define type 4a myocardial infarction (MI). In the absence of periprocedural angiographic flow-limiting complications or electrocardiogram (ECG) and imaging evidence of new myocardial ischaemia, we propose the same post-PCI cTn cut-off threshold (>5× 99th percentile URL) be used to define prognostically relevant 'major' periprocedural myocardial injury. As both type 4a MI and major periprocedural myocardial injury are strong independent predictors of all-cause mortality at 1 year post-PCI, they may be used as quality metrics and surrogate endpoints for clinical trials. Further research is needed to evaluate treatment strategies for reducing the risk of major periprocedural myocardial injury, type 4a MI, and MACE in CCS patients undergoing PCI.


Subject(s)
Coronary Artery Disease , Heart Injuries , Myocardial Infarction , Percutaneous Coronary Intervention , Biomarkers , Consensus , Humans , Myocardial Infarction/etiology , Percutaneous Coronary Intervention/adverse effects , Risk Factors , Treatment Outcome
12.
J Cell Mol Med ; 25(9): 4455-4465, 2021 05.
Article in English | MEDLINE | ID: mdl-33797200

ABSTRACT

Myocardial infarction requires urgent reperfusion to salvage viable heart tissue. However, reperfusion increases infarct size further by promoting mitochondrial damage in cardiomyocytes. Exosomes from a wide range of different cell sources have been shown to activate cardioprotective pathways in cardiomyocytes, thereby reducing infarct size. Yet, it is currently challenging to obtain highly pure exosomes in quantities enough for clinical studies. To overcome this problem, we used exosomes isolated from CTX0E03 neuronal stem cells, which are genetically stable, conditionally inducible and can be produced on an industrial scale. However, it is unknown whether exosomes from neuronal stem cells may reduce cardiac ischaemia/reperfusion injury. In this study, we demonstrate that exosomes from differentiating CTX0E03 cells can reduce infarct size in mice. In an in vitro assay, these exosomes delayed cardiomyocyte mitochondrial permeability transition pore opening, which is responsible for cardiomyocyte death after reperfusion. The mechanism of MPTP inhibition was via gp130 signalling and the downstream JAK/STAT pathway. Our results support previous findings that exosomes from non-cardiomyocyte-related cells produce exosomes capable of protecting cardiomyocytes from myocardial infarction. We anticipate our findings may encourage scientists to use exosomes obtained from reproducible clinical-grade stocks of cells for their ischaemia/reperfusion studies.


Subject(s)
Cytokine Receptor gp130/metabolism , Exosomes/physiology , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/complications , Neural Stem Cells/physiology , Protective Agents/administration & dosage , Animals , Cytokine Receptor gp130/genetics , Gene Expression Regulation , Janus Kinase 1/genetics , Janus Kinase 2/genetics , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Neural Stem Cells/cytology
13.
Basic Res Cardiol ; 116(1): 12, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33629195

ABSTRACT

The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.


Subject(s)
Cytokines/physiology , Immunity, Innate , Inflammation/therapy , Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/prevention & control , Animals , COVID-19/complications , Cell Survival , Extracellular Vesicles/physiology , Humans , Immunity, Humoral , Inflammation/blood , Myocardial Reperfusion Injury/immunology
14.
Basic Res Cardiol ; 116(1): 52, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34515837

ABSTRACT

Acute myocardial infarction (AMI) and the heart failure (HF) which may follow are among the leading causes of death and disability worldwide. As such, new therapeutic interventions are still needed to protect the heart against acute ischemia/reperfusion injury to reduce myocardial infarct size and prevent the onset of HF in patients presenting with AMI. However, the clinical translation of cardioprotective interventions that have proven to be beneficial in preclinical animal studies, has been challenging. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic in vivo preclinical assessment of the efficacy of promising cardioprotective interventions prior to their clinical evaluation. To address this, we propose an in vivo set of step-by-step criteria for IMproving Preclinical Assessment of Cardioprotective Therapies ('IMPACT'), for investigators to consider adopting before embarking on clinical studies, the aim of which is to improve the likelihood of translating novel cardioprotective interventions into the clinical setting for patient benefit.


Subject(s)
Heart Failure , Myocardial Infarction , Reperfusion Injury , Animals , Heart Failure/prevention & control , Humans
15.
Basic Res Cardiol ; 116(1): 32, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33942194

ABSTRACT

Stroke remains one of the most common causes of death and disability worldwide. Several preclinical studies demonstrated that the brain can be effectively protected against ischaemic stroke by two seemingly distinct treatments: remote ischaemic conditioning (RIC), involving cycles of ischaemia/reperfusion applied to a peripheral organ or tissue, or by systemic administration of glucagon-like-peptide-1 (GLP-1) receptor (GLP-1R) agonists. The mechanisms underlying RIC- and GLP-1-induced neuroprotection are not completely understood. In this study, we tested the hypothesis that GLP-1 mediates neuroprotection induced by RIC and investigated the effect of GLP-1R activation on cerebral blood vessels, as a potential mechanism of GLP-1-induced protection against ischaemic stroke. A rat model of ischaemic stroke (90 min of middle cerebral artery occlusion followed by 24-h reperfusion) was used. RIC was induced by 4 cycles of 5 min left hind limb ischaemia interleaved with 5-min reperfusion periods. RIC markedly (by ~ 80%) reduced the cerebral infarct size and improved the neurological score. The neuroprotection established by RIC was abolished by systemic blockade of GLP-1R with a specific antagonist Exendin(9-39). In the cerebral cortex of GLP-1R reporter mice, ~ 70% of cortical arterioles displayed GLP-1R expression. In acute brain slices of the rat cerebral cortex, activation of GLP-1R with an agonist Exendin-4 had a strong dilatory effect on cortical arterioles and effectively reversed arteriolar constrictions induced by metabolite lactate or oxygen and glucose deprivation, as an ex vivo model of ischaemic stroke. In anaesthetised rats, Exendin-4 induced lasting increases in brain tissue PO2, indicative of increased cerebral blood flow. These results demonstrate that neuroprotection against ischaemic stroke established by remote ischaemic conditioning is mediated by a mechanism involving GLP-1R signalling. Potent dilatory effect of GLP-1R activation on cortical arterioles suggests that the neuroprotection in this model is mediated via modulation of cerebral blood flow and improved brain perfusion.


Subject(s)
Arterioles/drug effects , Cerebrovascular Circulation/drug effects , Hindlimb/blood supply , Incretins/pharmacology , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Preconditioning , Ischemic Stroke/prevention & control , Neuroprotective Agents/pharmacology , Peptide Fragments/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Arterioles/metabolism , Arterioles/physiopathology , Disease Models, Animal , Glucagon-Like Peptide-1 Receptor/metabolism , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/physiopathology , Ischemic Stroke/metabolism , Ischemic Stroke/physiopathology , Male , Rats, Sprague-Dawley , Regional Blood Flow
16.
Cytotherapy ; 23(5): 373-380, 2021 05.
Article in English | MEDLINE | ID: mdl-33934807

ABSTRACT

Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50-200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex "work-in-progress" MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.


Subject(s)
Extracellular Vesicles , Graft vs Host Disease , Mesenchymal Stem Cells , Humans , Prospective Studies
17.
J Appl Clin Med Phys ; 22(1): 37-44, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33277960

ABSTRACT

PURPOSE: To determine the optimal dose-volume constraint for laryngeal sparing using three commonly employed intensity modulated radiation therapy (IMRT) approaches in patients with oropharyngeal cancer treated to the bilateral neck. MATERIALS AND METHODS: Thirty patients with stage II-IVA oropharynx cancers received definitive radiotherapy with split-field IMRT (SF-IMRT) to the bilateral neck between 2008 and 2013. Each case was re-planned using whole-field IMRT (WF-IMRT) and volumetric modulated arc therapy (VMAT) and plan quality metrics and dose to laryngeal structures was evaluated. Two larynx volumes were defined and compared on the current study: the Radiation Therapy Oncology Group (RTOG) larynx as defined per the RTOG 1016 protocol and the MDACC larynx defined as the components of the larynx bounded by the superior and inferior extent of the thyroid cartilage. RESULTS: Target coverage, conformity, and heterogeneity indices were similar in all techniques. The RTOG larynx mean dose was lower with WF-IMRT than SF-IMRT (22.1 vs 25.8 Gy; P < 0.01). The MDACC larynx mean dose was 17.5 Gy ± 5.4 Gy with no differences between the 3 techniques. WF-IMRT and VMAT plans were associated with lower mean doses to the supraglottic larynx (42.1 vs 41.2 vs 54.8 Gy; P < 0.01) and esophagus (18.1 vs 18.2 vs 36 Gy; P < 0.01). CONCLUSIONS: Modern whole field techniques can provide effective laryngeal sparing in patients receiving radiotherapy to the bilateral neck for advanced oropharyngeal cancers. SUMMARY: We evaluated laryngeal dose in patients with locally advanced oropharyngeal cancer treated to the bilateral neck using split-field IMRT (SF-IMRT), whole-field IMRT (WF-IMRT) and volumetric arc therapy (VMAT). All three techniques provided good sparing of laryngeal structures and were able to achieve a mean larynx dose < 33 Gy. There were no significant differences in dose to target structures or non-laryngeal organs at risk among techniques.


Subject(s)
Larynx , Oropharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Organs at Risk , Oropharyngeal Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
18.
J Cell Mol Med ; 24(7): 3795-3806, 2020 04.
Article in English | MEDLINE | ID: mdl-32155321

ABSTRACT

Acute myocardial infarction causes lethal injury to cardiomyocytes during both ischaemia and reperfusion (IR). It is important to define the precise mechanisms by which they die in order to develop strategies to protect the heart from IR injury. Necrosis is known to play a major role in myocardial IR injury. There is also evidence for significant myocardial death by other pathways such as apoptosis, although this has been challenged. Mitochondria play a central role in both of these pathways of cell death, as either a causal mechanism is the case of mitochondrial permeability transition leading to necrosis, or as part of the signalling pathway in mitochondrial cytochrome c release and apoptosis. Autophagy may impact this process by removing dysfunctional proteins or even entire mitochondria through a process called mitophagy. More recently, roles for other programmed mechanisms of cell death such as necroptosis and pyroptosis have been described, and inhibitors of these pathways have been shown to be cardioprotective. In this review, we discuss both mitochondrial and mitochondrial-independent pathways of the major modes of cell death, their role in IR injury and their potential to be targeted as part of a cardioprotective strategy. This article is part of a special Issue entitled 'Mitochondria as targets of acute cardioprotection' and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.


Subject(s)
Mitochondria/genetics , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/genetics , Myocardium/metabolism , Apoptosis/genetics , Autophagy/genetics , Cell Death/genetics , Humans , Mitochondria/pathology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Necrosis/genetics , Necrosis/pathology , Signal Transduction/genetics
19.
J Cell Mol Med ; 24(8): 4871-4876, 2020 04.
Article in English | MEDLINE | ID: mdl-32101370

ABSTRACT

Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence-Associated ß-Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9- and CD81-positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.


Subject(s)
Cellular Senescence/genetics , Endothelial Cells/metabolism , Exosomes/genetics , Extracellular Vesicles/genetics , Biomarkers/metabolism , Endothelial Cells/cytology , Flow Cytometry , Human Umbilical Vein Endothelial Cells , Humans , Tetraspanin 29/genetics , Tetraspanin 30/genetics , beta-Galactosidase/genetics , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
20.
Basic Res Cardiol ; 115(6): 69, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188438

ABSTRACT

Treatment of acute myocardial infarct patients (AMI) includes rapid restoration of coronary blood flow and pharmacological therapy aimed to prevent pain and maintain vessel patency. Many interventions have been investigated to offer additional protection. One such intervention is remote ischaemic conditioning (RIC) involving short-episodes of ischaemia of the arm with a blood pressure cuff, followed by reperfusion to protect the heart organs from subsequent severe ischaemia. However, the recent CONDI2-ERIC-PPCI multicentre study of RIC in STEMI showed no benefit in clinical outcome in low risk patients. It could also be argued that these patients were already in a partially protected state, highlighting the disconnect between animal- and clinical-based outcome studies. To improve potential translatability, we developed an animal model using pharmacological agents similar to those given to patients presenting with an AMI, prior to PPCI. Rats underwent MI on a combined background of an opioid agonist, heparin and a platelet-inhibitor thereby allowing us to assess whether additional cardioprotective strategies had any effect over and above this "cocktail". We demonstrated that the "background drugs" were protective in their own right, reducing MI from 57.5 ± 3.7% to 37.3 ± 2.9% (n = 11, p < 0.001). On this background of drugs, RIC did not add any further protection (38.0 ± 3.4%). However, using a caspase inhibitor, which acts via a different mechanistic pathway to RIC, we were able to demonstrate additional protection (20.6 ± 3.3%). This concept provides initial evidence to develop models which can be used to evaluate future animal-to-clinical translation in cardioprotective studies.


Subject(s)
Analgesics, Opioid/pharmacology , Anticoagulants/pharmacology , Caspase Inhibitors/pharmacology , Coronary Circulation/drug effects , Extremities/blood supply , Ischemic Preconditioning, Myocardial , Myocardial Infarction/prevention & control , Myocardium/pathology , Platelet Aggregation Inhibitors/pharmacology , Animals , Disease Models, Animal , Male , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Rats, Sprague-Dawley , Regional Blood Flow , Tissue Survival , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL