Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Nature ; 556(7699): 85-88, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29579743

ABSTRACT

Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

2.
Opt Express ; 31(15): 23877-23888, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475228

ABSTRACT

The response of terahertz to the presence of water content makes it an ideal analytical tool for hydration monitoring in agricultural applications. This study reports on the feasibility of terahertz sensing for monitoring the hydration level of freshly harvested leaves of Celtis sinensis by employing a imaging platform based on quantum cascade lasers and laser feedback interferometry. The imaging platform produces wide angle high resolution terahertz amplitude and phase images of the leaves at high frame rates allowing monitoring of dynamic water transport and other changes across the whole leaf. The complementary information in the resulting images was fed to a machine learning model aiming to predict relative water content from a single frame. The model was used to predict the change in hydration level over time. Results of the study suggest that the technique could have substantial potential in agricultural applications.

3.
Nucleic Acids Res ; 49(3): 1426-1435, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33476368

ABSTRACT

Recombinase A (RecA) is central to homologous recombination. However, despite significant advances, the mechanism with which RecA is able to orchestrate a search for homology remains elusive. DNA nanostructure-augmented high-speed AFM offers the spatial and temporal resolutions required to study the RecA recombination mechanism directly and at the single molecule level. We present the direct in situ observation of RecA-orchestrated alignment of homologous DNA strands to form a stable recombination product within a supporting DNA nanostructure. We show the existence of subtle and short-lived states in the interaction landscape, which suggests that RecA transiently samples micro-homology at the single RecA monomer-level throughout the search for sequence alignment. These transient interactions form the early steps in the search for sequence homology, prior to the formation of stable pairings at >8 nucleotide seeds. The removal of sequence micro-homology results in the loss of the associated transient sampling at that location.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Homologous Recombination , Rec A Recombinases/metabolism , DNA/chemistry , Microscopy, Atomic Force , Nanostructures/chemistry , Polymerization , Sequence Homology, Nucleic Acid
4.
Sensors (Basel) ; 23(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36904925

ABSTRACT

To reduce the water footprint in agriculture, the recent push toward precision irrigation management has initiated a sharp rise in photonics-based hydration sensing in plants in a non-contact, non-invasive manner. Here, this aspect of sensing was employed in the terahertz (THz) range for mapping liquid water in the plucked leaves of Bambusa vulgaris and Celtis sinensis. Two complementary techniques, broadband THz time-domain spectroscopic imaging and THz quantum cascade laser-based imaging, were utilized. The resulting hydration maps capture the spatial variations within the leaves as well as the hydration dynamics in various time scales. Although both techniques employed raster scanning to acquire the THz image, the results provide very distinct and different information. Terahertz time-domain spectroscopy provides rich spectral and phase information detailing the dehydration effects on the leaf structure, while THz quantum cascade laser-based laser feedback interferometry gives insight into the fast dynamic variation in dehydration patterns.

5.
Opt Express ; 30(18): 31785-31794, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242253

ABSTRACT

Lasers that can emit two photons from a single electron relaxation between two states of the same parity have been discussed since the early days of the laser era. However, such lasers have seen only limited success, mainly due to a lack of suitable gain medium. We propose that terahertz (THz) frequency quantum cascade lasers (QCLs) are an ideal semiconductor structure to realize such two-photon emissions. In this work, we present a THz QCL heterostructure designed to emit two resonant photons from each electronic relaxation between two same-parity states in the active region. We present coupled Maxwell-Bloch equations that describe the dynamics of such a two-photon laser and find analytical solutions for the steady-state light intensity, the steady-state energy-resolved carrier densities, and the total threshold carrier density. Due to the two-photon emission from each excited state relaxation and an increased photon-driven carrier transport rate, our simulations predict a significant enhancement of light intensity in our designed resonant two-photon THz QCL when compared to an exemplar conventional THz QCL structure.

6.
Opt Express ; 28(16): 23239-23250, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752323

ABSTRACT

A model based on carrier rate equations is proposed to evaluate the gain saturation and predict the dependence of the output power of a terahertz master-oscillator power-amplifier quantum cascade laser (THz-MOPA-QCL) on the material and structure parameters. The model reveals the design rules of the preamplifier and the power extractor to maximize the output power and the wall-plug efficiency. The correction of the model is verified by its agreement with the experiment results. The optimized MOPA devices exhibit single-mode emission at ∼ 2.6 THz with a side mode suppression ratio of 23 dB, a pulsed output power of 153 mW, a wall-plug efficiency of 0.22%, and a low divergence angle of ∼6°×16°, all measured at an operation temperature of 77 K. The model developed here is helpful for the design of MOPA devices and semiconductor optical amplifiers, in which the active region is based on intersubband transitions.

7.
Opt Express ; 27(15): 20231-20240, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510121

ABSTRACT

Miniaturized frequency combs (FCs) can be self-generated at terahertz (THz) frequencies through four-wave mixing in the cavity of a quantum cascade laser (QCL). To date, however, stable comb operation is only observed over a small operational current range in which the bias-depended chromatic dispersion is compensated. As most dispersion compensation techniques in the THz range are not tunable, this limits the spectral coverage of the comb and the emitted output power, restricting potential applications in, for example, metrology and ultrashort THz pulse generation. Here, we demonstrate an alternative architecture that provides a tunable, lithographically independent, control of the free-running coherence properties of THz QCL FCs. This is achieved by integrating an on-chip tightly coupled mirror with the QCL cavity, providing an external cavity and hence a tunable Gires Tournois interferometer (GTI). By finely adjusting the gap between the GTI and the back-facet of an ultra-broadband, high dynamic range QCL, we attain wide dispersion compensation regions, where stable and narrow (~3 kHz linewidth) single beatnotes extend over an operation range that is significantly larger than that of dispersion-dominated bare laser cavity counterparts. Significant reduction of the phase noise is registered over the whole QCL spectral bandwidth (1.35 THz). This agile accommodation of a tunable dispersion compensator will help enable uptake of QCL-combs for metrological, spectroscopic and quantum technology-oriented applications.

8.
Opt Express ; 27(7): 10221-10233, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045166

ABSTRACT

We report a coherent terahertz (THz) imaging system that utilises a quantum cascade laser (QCL) operating in pulsed-mode as both the source and detector. The realisation of a short-pulsed THz QCL feedback interferometer permits both high peak powers and improved thermal efficiency, which enables the cryogen-free operation of the system. In this work, we demonstrated pulsed-mode swept-frequency laser feedback interferometry experimentally. Our interferometric detection scheme not only permits the simultaneous creation of both amplitude and phase images, but inherently suppresses unwanted background radiation. We demonstrate that the proposed system utilising microsecond pulses has the potential to achieve 0.25 mega-pixel per second acquisition rates, paving the pathway to video frame rate THz imaging.

9.
Opt Express ; 27(3): 2248-2257, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732264

ABSTRACT

Intersubband (ISB) transitions in semiconductor multi-quantum well (MQW) structures are promising candidates for the development of saturable absorbers at terahertz (THz) frequencies. Here, we exploit amplitude and phase-resolved two-dimensional (2D) THz spectroscopy on the sub-cycle time scale to observe directly the saturation dynamics and coherent control of ISB transitions in a metal-insulator MQW structure. Clear signatures of incoherent pump-probe and coherent four-wave mixing signals are recorded as a function of the peak electric field of the single-cycle THz pulses. All nonlinear signals reach a pronounced maximum for a THz electric field amplitude of 11 kV/cm and decrease for higher fields. We demonstrate that this behavior is a fingerprint of THz-driven carrier-wave Rabi flopping. A numerical solution of the Maxwell-Bloch equations reproduces our experimental findings quantitatively and traces the trajectory of the Bloch vector. This microscopic model allows us to design tailored MQW structures with optimized dynamical properties for saturable absorbers that could be used in future compact semiconductor-based single-cycle THz sources.

10.
Opt Lett ; 44(23): 5663-5666, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31774748

ABSTRACT

Owing to their intrinsic stability against optical feedback (OF), quantum cascade lasers (QCLs) represent a uniquely versatile source to further improve self-mixing interferometry at mid-infrared and terahertz (THz) frequencies. Here, we show the feasibility of detecting with nanometer precision, the deeply subwavelength ($ \lt \lambda /6000 $<λ/6000) mechanical vibrations of a suspended $ {{\rm Si}_3}{{\rm N}_4} $Si3N4 membrane used as the external element of a THz QCL feedback interferometer. Besides representing an extension of the applicability of vibrometric characterization at THz frequencies, our system can be exploited for the realization of optomechanical applications, such as dynamical switching between different OF regimes and a still-lacking THz master-slave configuration.

11.
Opt Express ; 26(14): 18423-18435, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-30114022

ABSTRACT

At terahertz (THz) frequencies, scattering-type scanning near-field optical microscopy (s-SNOM) based on continuous wave sources mostly relies on cryogenic and bulky detectors, which represents a major constraint for its practical application. Here, we devise a THz s-SNOM system that provides both amplitude and phase contrast and achieves nanoscale (60-70nm) in-plane spatial resolution. It features a quantum cascade laser that simultaneously emits THz frequency light and senses the backscattered optical field through a voltage modulation induced inherently through the self-mixing technique. We demonstrate its performance by probing a phonon-polariton-resonant CsBr crystal and doped black phosphorus flakes.

12.
Opt Express ; 26(2): 1942-1953, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401915

ABSTRACT

A terahertz master-oscillation power-amplifier quantum cascade laser (THz-MOPA-QCL) is demonstrated where a grating coupler is employed to efficiently extract the THz radiation. By maximizing the group velocity and eliminating the scattering of THz wave in the grating coupler, the residue reflectivity is reduced down to the order of 10-3. A buried DFB grating and a tapered preamplifier are proposed to improve the seed power and to reduce the gain saturation, respectively. The THz-MOPA-QCL exhibits single-mode emission, a single-lobed beam with a narrow divergence angle of 18° × 16°, and a pulsed output power of 136 mW at 20 K, which is 36 times that of a second-order DFB laser from the same material.

13.
Opt Lett ; 43(10): 2225-2228, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29762559

ABSTRACT

We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10-4 cm-1 is resolvable.

15.
Opt Express ; 25(1): 486-496, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-28085842

ABSTRACT

We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.

16.
Opt Express ; 25(18): 21753-21761, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041469

ABSTRACT

Two-dimensional spectroscopy is performed on a terahertz (THz) frequency quantum cascade laser (QCL) with two broadband THz pulses. Gain switching is used to amplify the first THz pulse and the second THz pulse is used to probe the system. Fourier transforms are taken with respect to the delay time between the two THz pulses and the sampling time of the THz probe pulse. The two-dimensional spectrum consists of three peaks at (ωτ = 0, ωt = ω0), (ωτ = ω0, ωt = ω0), and (ωτ = 2ω0, ωt = ω0) where ω0 denotes the lasing frequency. The peak at ωτ = 0 represents the response of the probe to the zero-frequency (rectified) component of the instantaneous intensity and can be used to measure the gain recovery.

17.
Opt Express ; 25(9): 10177-10188, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28468392

ABSTRACT

We report the generation mechanism associated with nano-grating electrode photomixers fabricated on Fe-doped InGaAsP substrates. Two different emitter designs incorporating nano-gratings coupled to the same broadband antenna were characterized in a continuous-wave terahertz (THz) frequency system employing telecommunications wavelength lasers for generation and coherent detection. The current-voltage characteristics and THz emission bandwidth of the emitters is compared for different bias polarities and optical polarisations. The THz output from the emitters is also mapped as a function of the position of the laser excitation spot for both continuous-wave and pulsed excitation. This mapping, together with full-wave simulations of the structures, confirms the generation mechanism to be due to an enhanced optical electric field at the grating tips resulting in increased optical absorption, coinciding with a concentration of the electrostatic field.

18.
Opt Express ; 24(19): 21948-56, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27661929

ABSTRACT

We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I-V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL.

19.
Opt Express ; 24(23): 26986-26997, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27857425

ABSTRACT

We report on large-area photoconductive terahertz (THz) emitters with a low-temperature-grown GaAs (LT-GaAs) active layer fabricated on quartz substrates using a lift-off transfer process. These devices are compared to the same LT-GaAs emitters when fabricated on the growth substrate. We find that the transferred devices show higher optical-to-THz conversion efficiencies and significantly larger breakdown fields, which we attribute to reduced parasitic current in the substrate. Through these improvements, we demonstrate a factor of ~8 increase in emitted THz field strength at the maximum operating voltage. In addition we find improved performance when these devices are used for photoconductive detection, which we explain through a combination of reduced parasitic substrate currents and reduced space-charge build-up in the device.

20.
Opt Express ; 24(18): 20554-70, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607659

ABSTRACT

Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.

SELECTION OF CITATIONS
SEARCH DETAIL