Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Environ Sci Technol ; 54(13): 8380-8389, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32432863

ABSTRACT

Polychlorinated dibenzo-p-dioxins (PCDDs) are a class of toxic organic compounds released by a number of industrial processes. Sediments of the Passaic River in New Jersey are contaminated by these compounds. To explore the ability of native organohalide respiring bacteria to dechlorinate PCDDs, we first enriched bacteria from sediments of the Passaic River on two organohalides, trichloroethene (TCE) and 1,2-dichlorobenzene (DCB). We then used these enriched sediment cultures and original, unamended sediment as the inocula in a secondary experiment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TeCDD), 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD), and 2,7-dichlorodibenzo-p-dioxin (2,7-DiCDD) as target organohalides. We observed dechlorination of 1,2,3,4-TeCDD by all inocula, although to different extents. We observed progressive dechlorination of 2,3,7,8-TeCDD only in bottles inoculated with the DCB enrichment culture, and dechlorination of 2,7-DiCDD almost exclusively in bottles inoculated with the original, unamended river sediment. Dechlorination of 1,2,3,4-TeCDD was more rapid than that of the other amended congeners. Phylotypes within the class Dehalococcoidia associated with organohalide dechlorination were differentially enriched in DCB versus TCE enrichment cultures, indicating that they may play a role in dechlorination of the PCDDs.


Subject(s)
Chloroflexi , Polychlorinated Dibenzodioxins , Bacteria , Geologic Sediments , New Jersey , Rivers
2.
Proc Natl Acad Sci U S A ; 114(44): E9206-E9215, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078310

ABSTRACT

The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.


Subject(s)
Aquatic Organisms/growth & development , Coal/microbiology , Geologic Sediments/microbiology , Methanol/metabolism , Methylamines/metabolism , Seawater/microbiology , Biomass , Ecosystem , Isotopes/metabolism , Spectrometry, Mass, Secondary Ion/methods
3.
Environ Microbiol ; 20(12): 4281-4296, 2018 12.
Article in English | MEDLINE | ID: mdl-29968367

ABSTRACT

Nitrogen fixation, the biological conversion of N2 to NH3 , is critical to alleviating nitrogen limitation in many marine ecosystems. To date, few measurements exist of N2 fixation in deep-sea sediments. Here, we conducted > 400 bottle incubations with sediments from methane seeps, whale falls and background sites off the western coast of the United States from 600 to 2893 m water depth to investigate the potential rates, spatial distribution and biological mediators of benthic N2 fixation. We found that N2 fixation was widespread, yet heterogeneously distributed with sediment depth at all sites. In some locations, rates exceeded previous measurements by > 10×, and provided up to 30% of the community anabolic growth requirement for nitrogen. Diazotrophic activity appeared to be inhibited by pore water ammonium: N2 fixation was only observed if incubation ammonium concentrations were ≤ 25 µM, and experimental additions of ammonium reduced diazotrophy. In seep sediments, N2 fixation was dependent on CH4 and coincident with sulphate reduction, consistent with previous work showing diazotrophy by microorganisms mediating sulphate-coupled methane oxidation. However, the pattern of diazotrophy was different in whale-fall and associated reference sediments, where it was largely unaffected by CH4 , suggesting catabolically different diazotrophs at these sites.


Subject(s)
Bacteria/metabolism , Carbon/chemistry , Carbon/metabolism , Geologic Sediments/microbiology , Nitrogen Fixation/physiology , Ammonium Compounds , Ecosystem , Methane , Nitrogen , Pacific Ocean , Seawater , Soil Microbiology
4.
Rapid Commun Mass Spectrom ; 31(9): 791-803, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28249106

ABSTRACT

RATIONALE: Dissolved sulfur species are of significant interest, both as important substrates for microbial activities and as key intermediaries in biogeochemical cycles. Species of intermediate oxidation state such as sulfite, thiosulfate, and thiols are of particular interest but are notoriously difficult to analyze, because of low concentrations and rapid oxidation during storage and analysis. METHODS: Dissolved sulfur species are reacted with monobromobimane which yields a fluorescent bimane derivative that is stable to oxidation. Separation by Ultra-Performance Liquid Chromatography (UPLC) on a C18 column yields baseline resolution of analytes in under 5 min. Fluorescence detection (380 nm excitation, 480 nm emission) provides highly selective and sensitive quantitation, and Time-of-Flight Mass Spectrometry (TOF-MS) is used to quantify isotopic abundance, providing the ability to detect stable isotope tracers (either 33 S or 34 S). RESULTS: Sulfite, thiosulfate, methanethiol, and bisulfide were quantified with on-column detection limits of picomoles (µM concentrations). Other sulfur species with unshared electrons are also amenable to analysis. TOF-MS detection of 34 S enrichment was accurate and precise to within 0.6% (relative) when sample and standard had similar isotope ratios, and was able to detect enrichments as small as 0.01 atom%. Accuracy was validated by comparison to isotope-ratio mass spectrometry. Four example applications are provided to demonstrate the utility of this method. CONCLUSIONS: Derivatization of aqueous sulfur species with bromobimane is easily accomplished in the field, and protects analytes from oxidation during storage. UPLC separation with fluorescence detection provides low-µM detection limits. Using high-resolution TOF-MS, accurate detection of as little as 0.01% 34 S label incorporation into multiple species is feasible. This provides a useful new analytical window into microbial sulfur cycling. Copyright © 2017 John Wiley & Sons, Ltd.

5.
Int J Syst Evol Microbiol ; 65(Pt 1): 251-259, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25342114

ABSTRACT

We report the isolation and growth characteristics of a gammaproteobacterial methane-oxidizing bacterium (Methylococcaceae strain WF1(T), 'whale fall 1') that shares 98 % 16S rRNA gene sequence identity with uncultivated free-living methanotrophs and the methanotrophic endosymbionts of deep-sea mussels, ≤94.6 % 16S rRNA gene sequence identity with species of the genus Methylobacter and ≤93.6 % 16S rRNA gene sequence identity with species of the genera Methylomonas and Methylosarcina. Strain WF1(T) represents the first cultivar from the 'deep sea-1' clade of marine methanotrophs, which includes members that participate in methane oxidation in sediments and the water column in addition to mussel endosymbionts. Cells of strain WF1(T) were elongated cocci, approximately 1.5 µm in diameter, and occurred singly, in pairs and in clumps. The cell wall was Gram-negative, and stacked intracytoplasmic membranes and storage granules were evident. The genomic DNA G+C content of WF1(T) was 40.5 mol%, significantly lower than that of currently described cultivars, and the major fatty acids were 16 : 0, 16 : 1ω9c, 16 : 1ω9t, 16 : 1ω8c and 16 : 2ω9,14. Growth occurred in liquid media at an optimal temperature of 23 °C, and was dependent on the presence of methane or methanol. Atmospheric nitrogen could serve as the sole nitrogen source for WF1(T), a capacity that had not been functionally demonstrated previously in members of Methylobacter. On the basis of its unique morphological, physiological and phylogenetic properties, this strain represents the type species within a new genus, and we propose the name Methyloprofundus sedimenti gen. nov., sp. nov. The type strain of Methyloprofundus sedimenti is WF1(T) ( = LMG 28393(T) = ATCC BAA-2619(T)).


Subject(s)
Geologic Sediments/microbiology , Methylococcaceae/classification , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , California , DNA, Bacterial/genetics , Fatty Acids/chemistry , Methane/metabolism , Methylococcaceae/genetics , Methylococcaceae/isolation & purification , Molecular Sequence Data , Pacific Ocean , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
Environ Microbiol ; 16(6): 1592-611, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24148160

ABSTRACT

Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphide-rich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold (≤ 10°C) and sulphidic (> 1 mM ΣH(2)S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.


Subject(s)
Archaea/genetics , Geologic Sediments/microbiology , Microbial Consortia/genetics , Sulfur-Reducing Bacteria/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , California , Genes, Archaeal , Genes, Bacterial , Geologic Sediments/chemistry , Metagenome , Methane/metabolism , Microbiological Phenomena , Molybdenum/metabolism , Nickel/metabolism , Oregon , Oxidation-Reduction , Phylogeny , Proteome/genetics , Proteome/metabolism , Tungsten/metabolism
7.
Microorganisms ; 11(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38138031

ABSTRACT

Extreme environments, including hypersaline pools, often serve as biogeographical islands. Putative colonizers would need to survive transport across potentially vast distances of inhospitable terrain. Hyperhalophiles, in particular, are often highly sensitive to osmotic pressure. Here, we assessed whether hyperhalophiles are capable of rapidly colonizing an isolated and sterile hypersaline pool and the order of succession of the ensuing colonizers. A sterile and isolated 1 m3 hypersaline mesocosm pool was constructed on a rooftop in Charleston, SC. Within months, numerous halophilic lineages successfully navigated the 20 m elevation and the greater than 1 km distance from the ocean shore, and a vibrant halophilic community was established. All told, in a nine-month period, greater than a dozen halophilic genera colonized the pool. The first to arrive were members of the Haloarchaeal genus Haloarcula. Like a weed, the Haloarcula rapidly colonized and dominated the mesocosm community but were later supplanted by other hyperhalophilic genera. As a possible source of long-distance inoculum, both aerosol and water column samples were obtained from the Great Salt Lake and its immediate vicinity. Members of the same genus, Haloarcula, were preferentially enriched in the aerosol sample relative to the water column samples. Therefore, it appears that a diverse array of hyperhalophiles are capable of surviving aeolian long-distance transport and that some lineages, in particular, have possibly adapted to that strategy.

8.
Appl Environ Microbiol ; 78(10): 3599-605, 2012 May.
Article in English | MEDLINE | ID: mdl-22427501

ABSTRACT

Filter-collected production water samples from a methane-rich gas field in the Cook Inlet basin of Alaska were investigated using whole-cell rRNA-targeted fluorescence in situ hybridization (FISH) and 16S rRNA tag pyrosequencing. Both techniques were consistent in determining the microbial community composition, including the archaeal or bacterial dominance of samples. The archaeal community is dominated by the obligate methylotrophic methanogen genus Methanolobus as well as the nutritional generalist methanogen genus Methanosarcina, which is capable of utilizing acetate, CO(2), and methyl-bearing compounds. The most-abundant bacterial groups are Firmicutes, notably of the Acetobacterium genus, and Cytophaga-Flexibacter-Bacteroides species (CFBs) affiliated with the order Bacteroidales. We observed spatial variation among samples in both the percentage of members of Archaea compared to that of members of Bacteria and the dominant members of the bacterial community, differences which could not be explained with the available geochemical data. Based upon the microbial community composition and the isotopic signature of methane associated with the Cook Inlet basin site, we propose a simplified reaction network beginning with the breakdown of coal macromolecules, followed by fermentation and methylotrophic and acetoclastic methane production.


Subject(s)
Archaea/classification , Bacteria/classification , Biota , In Situ Hybridization, Fluorescence/methods , Microbial Consortia , Oil and Gas Fields/microbiology , Water Microbiology , Acetates/metabolism , Alaska , Archaea/genetics , Bacteria/genetics , Carbon Dioxide/metabolism , Methane/metabolism , Sequence Analysis, DNA
9.
Sci Adv ; 6(14): eaay8562, 2020 04.
Article in English | MEDLINE | ID: mdl-32284974

ABSTRACT

Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ13C of -44 to -58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of 13C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150-million year-old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation.


Subject(s)
Annelida/microbiology , Aquatic Organisms/microbiology , Bacteria , Ecosystem , Seawater/microbiology , Symbiosis , Animals , Bacteria/classification , Bacteria/cytology , Bacteria/metabolism , Bacteria/ultrastructure , Methane/metabolism , RNA, Ribosomal, 16S
10.
Geobiology ; 17(6): 611-627, 2019 11.
Article in English | MEDLINE | ID: mdl-31364272

ABSTRACT

Archaeal ANaerobic MEthanotrophs (ANME) facilitate the anaerobic oxidation of methane (AOM), a process that is believed to proceed via the reversal of the methanogenesis pathway. Carbon isotopic composition studies indicate that ANME are metabolically diverse and able to assimilate metabolites including methane, methanol, acetate, and dissolved inorganic carbon (DIC). Our data support the interpretation that ANME in marine sediments at methane seeps assimilate both methane and DIC, and the carbon isotopic compositions of the tetrapyrrole coenzyme F430 and the membrane lipids archaeol and hydroxy-archaeol reflect their relative proportions of carbon from these substrates. Methane is assimilated via the methyl group of CH3 -tetrahydromethanopterin (H4 MPT) and DIC from carboxylation reactions that incorporate free intracellular DIC. F430 was enriched in 13 C (mean δ13 C = -27‰ for Hydrate Ridge and -80‰ for the Santa Monica Basin) compared to the archaeal lipids (mean δ13 C = -97‰ for Hydrate Ridge and -122‰ for the Santa Monica Basin). We propose that depending on the side of the tricarboxylic acid (TCA) cycle used to synthesize F430, its carbon was derived from 76% DIC and 24% methane via the reductive side or 57% DIC and 43% methane via the oxidative side. ANME lipids are predicted to contain 42% DIC and 58% methane, reflecting the amount of each assimilated into acetyl-CoA. With isotope models that include variable fractionation during biosynthesis for different carbon substrates, we show the estimated amounts of DIC and methane can result in carbon isotopic compositions of - 73‰ to - 77‰ for F430 and - 105‰ for archaeal lipids, values close to those for Santa Monica Basin. The F430 δ13 C value for Hydrate Ridge was 13 C-enriched compared with the modeled value, suggesting there is divergence from the predicted two carbon source models.


Subject(s)
Archaea/chemistry , Carbon Isotopes/analysis , Membrane Lipids/chemistry , Metalloporphyrins/chemistry , California , Geologic Sediments/microbiology , Methane/metabolism , Oregon , Oxidation-Reduction , Pacific Ocean
11.
Microbiome ; 6(1): 167, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30231937

ABSTRACT

BACKGROUND: Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. RESULTS: We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception-the vampire finch-which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia-bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high δ15N isotope values in the vampire finch, resembling top marine predators. The Galápagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. CONCLUSIONS: This study demonstrates the overall conservatism of the finch gut microbiome over short (< 1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition.


Subject(s)
Bacteria/isolation & purification , Finches/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/genetics , Biological Evolution , Climate , DNA, Bacterial/genetics , Ecuador , Feces/microbiology , Finches/classification , Finches/genetics , Gastrointestinal Tract/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Seasons
12.
Front Microbiol ; 7: 774, 2016.
Article in English | MEDLINE | ID: mdl-27303371

ABSTRACT

Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with (13)C-acetate, (15)N-ammonium, and (33)S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope ((13)C/(12)C, (15)N/(14)N, and (33)S/(32)S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs) into five distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA.

13.
Front Microbiol ; 7: 1166, 2016.
Article in English | MEDLINE | ID: mdl-27531993

ABSTRACT

Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

14.
ISME J ; 6(1): 158-70, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21716305

ABSTRACT

Highly acidic (pH 0-1) biofilms, known as 'snottites', form on the walls and ceilings of hydrogen sulfide-rich caves. We investigated the population structure, physiology and biogeochemistry of these biofilms using metagenomics, rRNA methods and lipid geochemistry. Snottites from the Frasassi cave system (Italy) are dominated (>70% of cells) by Acidithiobacillus thiooxidans, with smaller populations including an archaeon in the uncultivated 'G-plasma' clade of Thermoplasmatales (>15%) and a bacterium in the Acidimicrobiaceae family (>5%). Based on metagenomic evidence, the Acidithiobacillus population is autotrophic (ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), carboxysomes) and oxidizes sulfur by the sulfide-quinone reductase and sox pathways. No reads matching nitrogen fixation genes were detected in the metagenome, whereas multiple matches to nitrogen assimilation functions are present, consistent with geochemical evidence, that fixed nitrogen is available in the snottite environment to support autotrophic growth. Evidence for adaptations to extreme acidity include Acidithiobacillus sequences for cation transporters and hopanoid synthesis, and direct measurements of hopanoid membrane lipids. Based on combined metagenomic, molecular and geochemical evidence, we suggest that Acidithiobacillus is the snottite architect and main primary producer, and that snottite morphology and distributions in the cave environment are directly related to the supply of C, N and energy substrates from the cave atmosphere.


Subject(s)
Acidithiobacillus/isolation & purification , Biofilms/classification , Caves/microbiology , Metagenomics/methods , Sulfur/metabolism , Acidithiobacillus/classification , Acidithiobacillus/physiology , Acidithiobacillus thiooxidans/genetics , Acidithiobacillus thiooxidans/metabolism , Actinobacteria/genetics , Actinobacteria/metabolism , Biofilms/growth & development , Euryarchaeota/isolation & purification , Euryarchaeota/physiology , Italy , Molecular Sequence Data , Nitrogen/metabolism , Phototrophic Processes
SELECTION OF CITATIONS
SEARCH DETAIL