Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849372

ABSTRACT

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Subject(s)
APOBEC Deaminases/genetics , Neoplasms/genetics , APOBEC Deaminases/metabolism , Cell Line , Cell Line, Tumor , DNA/metabolism , DNA Mutational Analysis/methods , Databases, Genetic , Exome , Genome, Human/genetics , Heterografts , Humans , Mutagenesis , Mutation/genetics , Mutation Rate , Retroelements , Exome Sequencing/methods
2.
Cell ; 171(5): 1029-1041.e21, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29056346

ABSTRACT

Cancer develops as a result of somatic mutation and clonal selection, but quantitative measures of selection in cancer evolution are lacking. We adapted methods from molecular evolution and applied them to 7,664 tumors across 29 cancer types. Unlike species evolution, positive selection outweighs negative selection during cancer development. On average, <1 coding base substitution/tumor is lost through negative selection, with purifying selection almost absent outside homozygous loss of essential genes. This allows exome-wide enumeration of all driver coding mutations, including outside known cancer genes. On average, tumors carry ∼4 coding substitutions under positive selection, ranging from <1/tumor in thyroid and testicular cancers to >10/tumor in endometrial and colorectal cancers. Half of driver substitutions occur in yet-to-be-discovered cancer genes. With increasing mutation burden, numbers of driver mutations increase, but not linearly. We systematically catalog cancer genes and show that genes vary extensively in what proportion of mutations are drivers versus passengers.


Subject(s)
Neoplasms/genetics , Neoplasms/pathology , Humans , INDEL Mutation , Microsatellite Instability , Models, Genetic , Mutation Rate , Neoplasms/immunology , Point Mutation , Polymorphism, Single Nucleotide , Selection, Genetic
4.
Nature ; 602(7895): 162-168, 2022 02.
Article in English | MEDLINE | ID: mdl-35058638

ABSTRACT

Mutations in cancer-associated genes drive tumour outgrowth, but our knowledge of the timing of driver mutations and subsequent clonal dynamics is limited1-3. Here, using whole-genome sequencing of 1,013 clonal haematopoietic colonies from 12 patients with myeloproliferative neoplasms, we identified 580,133 somatic mutations to reconstruct haematopoietic phylogenies and determine clonal histories. Driver mutations were estimated to occur early in life, including the in utero period. JAK2V617F was estimated to have been acquired by 33 weeks of gestation to 10.8 years of age in 5 patients in whom JAK2V617F was the first event. DNMT3A mutations were acquired by 8 weeks of gestation to 7.6 years of age in 4 patients, and a PPM1D mutation was acquired by 5.8 years of age. Additional genomic events occurred before or following JAK2V617F acquisition and as independent clonal expansions. Sequential driver mutation acquisition was separated by decades across life, often outcompeting ancestral clones. The mean latency between JAK2V617F acquisition and diagnosis was 30 years (range 11-54 years). Estimated historical rates of clonal expansion varied substantially (3% to 190% per year), increased with additional driver mutations, and predicted latency to diagnosis. Our study suggests that early driver mutation acquisition and life-long growth and evolution underlie adult myeloproliferative neoplasms, raising opportunities for earlier intervention and a new model for cancer development.


Subject(s)
Mutation , Myeloproliferative Disorders , Neoplasms , Adult , Child, Preschool , Clone Cells/pathology , Humans , Janus Kinase 2/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Phylogeny , Protein Phosphatase 2C , Whole Genome Sequencing
5.
Nature ; 606(7913): 343-350, 2022 06.
Article in English | MEDLINE | ID: mdl-35650442

ABSTRACT

Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.


Subject(s)
Aging , Clonal Hematopoiesis , Clone Cells , Longevity , Adolescent , Adult , Aged , Aged, 80 and over , Aging/genetics , Child , Child, Preschool , Clonal Hematopoiesis/genetics , Clone Cells/cytology , Female , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematopoietic Stem Cells/cytology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Multipotent Stem Cells/cytology , Young Adult
6.
Nature ; 595(7865): 85-90, 2021 07.
Article in English | MEDLINE | ID: mdl-33981037

ABSTRACT

The ontogeny of the human haematopoietic system during fetal development has previously been characterized mainly through careful microscopic observations1. Here we reconstruct a phylogenetic tree of blood development using whole-genome sequencing of 511 single-cell-derived haematopoietic colonies from healthy human fetuses at 8 and 18 weeks after conception, coupled with deep targeted sequencing of tissues of known embryonic origin. We found that, in healthy fetuses, individual haematopoietic progenitors acquire tens of somatic mutations by 18 weeks after conception. We used these mutations as barcodes and timed the divergence of embryonic and extra-embryonic tissues during development, and estimated the number of blood antecedents at different stages of embryonic development. Our data support a hypoblast origin of the extra-embryonic mesoderm and primitive blood in humans.


Subject(s)
Cell Lineage/genetics , Embryonic Development/genetics , Hematopoietic System/embryology , Hematopoietic System/metabolism , Mutation , Blood Cells/cytology , Blood Cells/metabolism , Clone Cells/cytology , Clone Cells/metabolism , DNA Mutational Analysis , Fetus/cytology , Fetus/embryology , Fetus/metabolism , Germ Layers/cytology , Germ Layers/metabolism , Health , Hematopoietic System/cytology , Humans , Karyotyping , Male , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Mutation Rate , Organ Specificity/genetics , Time Factors , Whole Genome Sequencing , Workflow
7.
Nature ; 597(7876): 381-386, 2021 09.
Article in English | MEDLINE | ID: mdl-34433962

ABSTRACT

Over the course of an individual's lifetime, normal human cells accumulate mutations1. Here we compare the mutational landscape in 29 cell types from the soma and germline using multiple samples from the same individuals. Two ubiquitous mutational signatures, SBS1 and SBS5/40, accounted for the majority of acquired mutations in most cell types, but their absolute and relative contributions varied substantially. SBS18, which potentially reflects oxidative damage2, and several additional signatures attributed to exogenous and endogenous exposures contributed mutations to subsets of cell types. The rate of mutation was lowest in spermatogonia, the stem cells from which sperm are generated and from which most genetic variation in the human population is thought to originate. This was due to low rates of ubiquitous mutational processes and may be partially attributable to a low rate of cell division in basal spermatogonia. These results highlight similarities and differences in the maintenance of the germline and soma.


Subject(s)
Germ Cells/metabolism , Germ-Line Mutation , Mutation Rate , Organ Specificity/genetics , Aged , Clone Cells/metabolism , Female , Health , Humans , Male , Microdissection , Middle Aged , Oxidative Stress , Spermatogonia/metabolism
8.
Nature ; 580(7805): 640-646, 2020 04.
Article in English | MEDLINE | ID: mdl-32350471

ABSTRACT

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Subject(s)
DNA Mutational Analysis , Endometrium/cytology , Endometrium/metabolism , Epithelium/metabolism , Health , Mutation , Adult , Age of Onset , Aged , Aged, 80 and over , Aging/genetics , Carcinogenesis/genetics , Clone Cells/cytology , Endometrial Neoplasms/genetics , Endometrium/pathology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelium/pathology , Female , Humans , Middle Aged , Parity/genetics , Time Factors , Young Adult
10.
Nature ; 561(7724): 473-478, 2018 09.
Article in English | MEDLINE | ID: mdl-30185910

ABSTRACT

Haematopoietic stem cells drive blood production, but their population size and lifetime dynamics have not been quantified directly in humans. Here we identified 129,582 spontaneous, genome-wide somatic mutations in 140 single-cell-derived haematopoietic stem and progenitor colonies from a healthy 59-year-old man and applied population-genetics approaches to reconstruct clonal dynamics. Cell divisions from early embryogenesis were evident in the phylogenetic tree; all blood cells were derived from a common ancestor that preceded gastrulation. The size of the stem cell population grew steadily in early life, reaching a stable plateau by adolescence. We estimate the numbers of haematopoietic stem cells that are actively making white blood cells at any one time to be in the range of 50,000-200,000. We observed adult haematopoietic stem cell clones that generate multilineage outputs, including granulocytes and B lymphocytes. Harnessing naturally occurring mutations to report the clonal architecture of an organ enables the high-resolution reconstruction of somatic cell dynamics in humans.


Subject(s)
Blood Cells/cytology , Blood Cells/metabolism , Cell Lineage/genetics , DNA Mutational Analysis , Mutation , Adult Stem Cells/cytology , Bayes Theorem , Cell Count , Cell Division , Clone Cells/cytology , Clone Cells/metabolism , Embryonic Development/genetics , Genome, Human/genetics , Granulocytes/cytology , Granulocytes/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Middle Aged , Time Factors
11.
Nature ; 520(7547): 353-357, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25830880

ABSTRACT

Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer.


Subject(s)
Cell Lineage , Neoplasm Metastasis/pathology , Prostatic Neoplasms/pathology , Androgens/deficiency , Cell Lineage/genetics , Clone Cells/metabolism , Clone Cells/pathology , DNA Mutational Analysis , Disease Progression , Epigenesis, Genetic , Genes, Tumor Suppressor , Humans , Male , Neoplasm Metastasis/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Signal Transduction/genetics
12.
Bioinformatics ; 30(17): i617-23, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25161255

ABSTRACT

MOTIVATION: Studying combinatorial patterns in cancer genomic datasets has recently emerged as a tool for identifying novel cancer driver networks. Approaches have been devised to quantify, for example, the tendency of a set of genes to be mutated in a 'mutually exclusive' manner. The significance of the proposed metrics is usually evaluated by computing P-values under appropriate null models. To this end, a Monte Carlo method (the switching-algorithm) is used to sample simulated datasets under a null model that preserves patient- and gene-wise mutation rates. In this method, a genomic dataset is represented as a bipartite network, to which Markov chain updates (switching-steps) are applied. These steps modify the network topology, and a minimal number of them must be executed to draw simulated datasets independently under the null model. This number has previously been deducted empirically to be a linear function of the total number of variants, making this process computationally expensive. RESULTS: We present a novel approximate lower bound for the number of switching-steps, derived analytically. Additionally, we have developed the R package BiRewire, including new efficient implementations of the switching-algorithm. We illustrate the performances of BiRewire by applying it to large real cancer genomics datasets. We report vast reductions in time requirement, with respect to existing implementations/bounds and equivalent P-value computations. Thus, we propose BiRewire to study statistical properties in genomic datasets, and other data that can be modeled as bipartite networks. AVAILABILITY AND IMPLEMENTATION: BiRewire is available on BioConductor at http://www.bioconductor.org/packages/2.13/bioc/html/BiRewire.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics/methods , Algorithms , Humans , Markov Chains , Monte Carlo Method , Neoplasms/genetics , Random Allocation , Software
13.
J Chem Phys ; 136(9): 094505, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22401450

ABSTRACT

Physical vapor deposition of organic molecules can produce glasses with high kinetic stability and low enthalpy. Previous experiments utilizing wide-angle x-ray scattering (WAXS) have shown that, relative to the ordinary glasses prepared by cooling the supercooled liquid, such glasses exhibit excess scattering characteristic of anisotropic packing. We have used vapor deposition to prepare glasses of four isomers of tris-naphthylbenzene (TNB), and measured both the WAXS patterns and the kinetic stability. While vapor-deposited glasses of all four TNB isomers exhibit high and nearly uniform kinetic stability, the level of excess scattering varies significantly. In addition, for α,α,ß-TNB, glasses of essentially identical kinetic stability can have excess scattering levels that vary by a factor of two. These results indicate that anisotropic packing is not the source of kinetic stability in vapor-deposited glasses but rather a secondary feature that depends upon the chemical structure of the glass-forming molecules. We also show that the time required for these stable vapor-deposited glasses to transform into the supercooled liquid greatly exceeds the structural relaxation time τ(α) of the liquid and scales approximately as τ(α) (0.6). The kinetic stability of the vapor-deposited TNB glasses matches that expected for ordinary glasses that have been aged for 10(2) to 10(7) years.


Subject(s)
Benzene Derivatives/chemistry , Glass , Naphthalenes/chemistry , Isomerism , Temperature
14.
Proc Natl Acad Sci U S A ; 106(36): 15165-70, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-19666494

ABSTRACT

Stable glasses of indomethacin (IMC) were prepared by using physical vapor deposition. Wide-angle X-ray scattering measurements were performed to characterize the average local structure. IMC glasses prepared at a substrate temperature of 0.84 T(g) (where T(g) is the glass transition temperature) and a deposition rate of 0.2 nm/s show a broad, high-intensity peak at low q values that is not present in the supercooled liquid or melt-quenched glasses. When annealed slightly above T(g), the new WAXS pattern transforms into the melt-quenched glass pattern, but only after very long annealing times. For a series of samples prepared at the lowest deposition rate, the new local packing arrangement is present only for deposition temperatures below T(g) -20 K, suggesting an underlying first-order liquid-to-liquid phase transition.


Subject(s)
Indomethacin/chemistry , Models, Chemical , Molecular Conformation , Phase Transition , Temperature , Scattering, Radiation , X-Rays
15.
Nat Med ; 28(8): 1662-1671, 2022 08.
Article in English | MEDLINE | ID: mdl-35953718

ABSTRACT

Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high-B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Cell Transformation, Neoplastic/genetics , Disease Progression , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology
16.
Nutr Cancer ; 63(4): 623-36, 2011.
Article in English | MEDLINE | ID: mdl-21526452

ABSTRACT

The chemopreventive properties of the chromatin-binding soy peptide, lunasin, are well documented, but its mechanism of action is unclear. To elucidate the mechanism by which lunasin reduces tumor foci formation in cultured mammalian cells, nontumorigenic (RWPE-1) and tumorigenic (RWPE-2) human prostate epithelial cells were treated with lunasin followed by gene expression profiling and characterization of the chromatin acetylation status for certain chemopreventive genes. The genes HIF1A, PRKAR1A, TOB1, and THBS1 were upregulated by lunasin in RWPE-1 but not in RWPE-2 cells. Using histone acetyltransferase (HAT) assays with acid-extracted histones as templates, we showed that lunasin specifically inhibited H4K8 acetylation while enhanced H4K16 acetylation catalyzed by HAT enzymes p300, PCAF, and HAT1A. These results suggest a novel mechanism for lunasin-dependent upregulation of gene expression. Chromatin immunoprecipitation (ChIP) revealed hypoacetylation of H4K16 in RWPE-2 cells, specifically at the 5' end of THBS1 containing a CpG island. Moreover, bisulfite PCR (BSP) and subsequent DNA sequencing indicated that this CpG island was hypomethylated in RWPE-1 but hypermethylated in RWPE-2 cells. Histone hypoacetylation and DNA hypermethylation in the 5' region of THBS1 may explain the inability of lunasin to upregulate this gene in RWPE-2 cells.


Subject(s)
Epithelial Cells/drug effects , Phytotherapy , Plant Extracts/pharmacology , Soybean Proteins/pharmacology , Thrombospondins/metabolism , Animals , Chemoprevention , Chromatin/metabolism , Chromatin Immunoprecipitation/methods , CpG Islands/drug effects , DNA Methylation , Epigenomics , Histones/metabolism , Humans , Male , Mice , Oligonucleotide Array Sequence Analysis , Prostate/cytology , Prostate/pathology , Sequence Analysis, DNA , Thrombospondins/genetics , Tumor Cells, Cultured , Up-Regulation
17.
Nat Commun ; 11(1): 1917, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317634

ABSTRACT

The evolution and progression of multiple myeloma and its precursors over time is poorly understood. Here, we investigate the landscape and timing of mutational processes shaping multiple myeloma evolution in a large cohort of 89 whole genomes and 973 exomes. We identify eight processes, including a mutational signature caused by exposure to melphalan. Reconstructing the chronological activity of each mutational signature, we estimate that the initial transformation of a germinal center B-cell usually occurred during the first 2nd-3rd decades of life. We define four main patterns of activation-induced deaminase (AID) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) mutagenesis over time, including a subset of patients with evidence of prolonged AID activity during the pre-malignant phase, indicating antigen-responsiveness and germinal center reentry. Our findings provide a framework to study the etiology of multiple myeloma and explore strategies for prevention and early detection.


Subject(s)
Gene Expression Regulation, Neoplastic , Multiple Myeloma/etiology , Multiple Myeloma/genetics , APOBEC-1 Deaminase/metabolism , Cytidine Deaminase/metabolism , DNA Mutational Analysis , Early Detection of Cancer , Exome , Genetics , Germinal Center/pathology , Humans , Linear Models , Minor Histocompatibility Antigens/metabolism , Mutation , Proteins/metabolism , RNA Editing , RNA, Messenger , Single-Cell Analysis
18.
J Autoimmun ; 32(3-4): 246-53, 2009.
Article in English | MEDLINE | ID: mdl-19345069

ABSTRACT

MicroRNAs (miRNAs) are small RNA molecules that negatively regulate protein coding gene expression and are thought to play a critical role in many biological processes. Aberrant levels of miRNAs have been associated with numerous diseases and cancers, and as such, miRNAs have gain much interests as diagnostic biomarkers, and as therapeutic targets. However, their role in autoimmunity is largely unknown. The aims of this study are to: (1) identify differentially expressed miRNAs in human primary biliary cirrhosis (PBC); (2) validate these independently; and (3) identify potential targets of differentially expressed miRNAs. We compared the expression of 377 miRNAs in explanted livers form subjects with PBC versus controls with normal liver histology. A total of 35 independent miRNAs were found to be differentially expressed in PBC (p < 0.001). Quantitative PCR was employed to validate down-regulation of microRNA-122a (miR-122a) and miR-26a and the increased expression of miR-328 and miR-299-5p. The predicted targets of these miRNAs are known to affect cell proliferation, apoptosis, inflammation, oxidative stress, and metabolism. Our data are the first to demonstrate that PBC is characterized by altered expression of hepatic miRNA; however additional studies are required to demonstrate a causal link between those miRNA and the development of PBC.


Subject(s)
Gene Expression Regulation , Liver Cirrhosis, Biliary/genetics , Liver/metabolism , MicroRNAs/genetics , Down-Regulation , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Up-Regulation
19.
J Phys Chem B ; 113(8): 2422-7, 2009 Feb 26.
Article in English | MEDLINE | ID: mdl-19183039

ABSTRACT

Mass uptake of water vapor was measured as a function of relative humidity for indomethacin glasses prepared using physical vapor deposition at different substrate temperatures. Highly stable glasses were produced on substrates at 265 K (0.84Tg) by depositing at 0.2 nm/s while samples similar to melt-cooled glasses were produced at 315 K and 5 nm/s. Samples deposited at 315 K absorb approximately the same amount of water as glasses prepared by supercooling the melt while stable glasses absorb a factor of 5 less water. Unexpectedly, the diffusion of water in the stable glass samples is 5-10 times faster than in the glass prepared by cooling the liquid.


Subject(s)
Glass/chemistry , Indomethacin/chemistry , Water/chemistry , Diffusion , Temperature
20.
Nat Commun ; 10(1): 3835, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444325

ABSTRACT

The multiple myeloma (MM) genome is heterogeneous and evolves through preclinical and post-diagnosis phases. Here we report a catalog and hierarchy of driver lesions using sequences from 67 MM genomes serially collected from 30 patients together with public exome datasets. Bayesian clustering defines at least 7 genomic subgroups with distinct sets of co-operating events. Focusing on whole genome sequencing data, complex structural events emerge as major drivers, including chromothripsis and a novel replication-based mechanism of templated insertions, which typically occur early. Hyperdiploidy also occurs early, with individual trisomies often acquired in different chronological windows during evolution, and with a preferred order of acquisition. Conversely, positively selected point mutations, whole genome duplication and chromoplexy events occur in later disease phases. Thus, initiating driver events, drawn from a limited repertoire of structural and numerical chromosomal changes, shape preferred trajectories of evolution that are biologically relevant but heterogeneous across patients.


Subject(s)
Carcinogenesis/genetics , Genome, Human/genetics , Models, Genetic , Multiple Myeloma/genetics , Adult , Aged , Bayes Theorem , Bone Marrow/pathology , Chromosomes, Human/genetics , Chromothripsis , DNA Replication , Female , Genomics , Humans , Male , Middle Aged , Multiple Myeloma/pathology , Phylogeny , Point Mutation , Time Factors , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL