Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34767757

ABSTRACT

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Subject(s)
Autistic Disorder/microbiology , Feeding Behavior , Gastrointestinal Microbiome , Adolescent , Age Factors , Autistic Disorder/diagnosis , Behavior , Child , Child, Preschool , Feces/microbiology , Female , Humans , Male , Phenotype , Phylogeny , Species Specificity
3.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G1-G15, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38651949

ABSTRACT

The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed, error prone, and lack architectural context or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine-learning model (BiliQML) able to quantify biliary forms in the liver of anti-keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F score of 0.87. Application of BiliQML on seven separate cholangiopathy models [genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, and Albumin-CRE;ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition)] allowed for a means to validate the capabilities and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models, indicating a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much-needed morphologic context to standard immunofluorescence-based histology, and provides clinical and basic science researchers with a novel tool for the characterization of cholangiopathies.NEW & NOTEWORTHY BiliQML is the first comprehensive machine-learning platform for biliary form analysis in whole slide histopathological images. This platform provides clinical and basic science researchers with a novel tool for the improved quantification and characterization of biliary tract disorders.


Subject(s)
Liver , Supervised Machine Learning , Liver/pathology , Liver/metabolism , Animals , Mice , Biliary Tract/pathology , Biliary Tract/metabolism , Image Processing, Computer-Assisted/methods , Bile Ducts/pathology , Bile Ducts/metabolism , Bile Duct Diseases/pathology , Bile Duct Diseases/metabolism , Disease Models, Animal
4.
Hepatology ; 77(4): 1274-1286, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36645229

ABSTRACT

BACKGROUND AND AIMS: A recent multicenter genetic exploration of the biliary atresia splenic malformation syndrome identified mutations in the ciliary gene PKD1L1 as candidate etiologic contributors. We hypothesized that deletion of Pkd1l1 in developing hepatoblasts would lead to cholangiopathy in mice. APPROACH AND RESULTS: CRISPR-based genome editing inserted loxP sites flanking exon 8 of the murine Pkd1l1 gene. Pkd1l1Fl/Fl cross-bred with alpha-fetoprotein-Cre expressing mice to generate a liver-specific intrahepatic Pkd1l1 -deficient model (LKO). From embryonic day 18 through week 30, control ( Fl/Fl ) and LKO mice were evaluated with standard serum chemistries and liver histology. At select ages, tissues were analyzed using RNA sequencing, immunofluorescence, and electron microscopy with a focus on biliary structures, peribiliary inflammation, and fibrosis. Bile duct ligation for 5 days of Fl/Fl and LKO mice was followed by standard serum and liver analytics. Histological analyses from perinatal ages revealed delayed biliary maturation and reduced primary cilia, with progressive cholangiocyte proliferation, peribiliary fibroinflammation, and arterial hypertrophy evident in 7- to 16-week-old LKO versus Fl/Fl livers. Following bile duct ligation, cholangiocyte proliferation, peribiliary fibroinflammation, and necrosis were increased in LKO compared with Fl/Fl livers. CONCLUSIONS: Bile duct ligation of the Pkd1l1 -deficient mouse model mirrors several aspects of the intrahepatic pathophysiology of biliary atresia in humans including bile duct dysmorphogenesis, peribiliary fibroinflammation, hepatic arteriopathy, and ciliopathy. This first genetically linked model of biliary atresia, the Pkd1l1 LKO mouse, may allow researchers a means to develop a deeper understanding of the pathophysiology of this serious and perplexing disorder, including the opportunity to identify rational therapeutic targets.


Subject(s)
Biliary Atresia , Ciliopathies , Humans , Animals , Mice , Infant , Biliary Atresia/pathology , Liver/pathology , Bile Ducts/pathology , Fibrosis , Ciliopathies/complications , Ciliopathies/pathology , Membrane Proteins
5.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G446-G452, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37697930

ABSTRACT

Intestinal inflammation and diarrhea are often associated with SARS-CoV-2 infection. The angiotensin converting enzyme 2 (ACE2) receptor plays a key role in SARS-CoV-2 pathogenesis, facilitating entry of the virus into epithelial cells, while also regulating mucosal inflammatory responses. Here, we investigated roles for the nuclear bile acid receptor farnesoid X receptor (FXR) in regulating ACE2 expression and virally mediated inflammatory responses in intestinal epithelia. Human colonic or ileal enteroids and cultured T84 and Caco-2 monolayers were treated with the FXR agonists, obeticholic acid (OCA) or GW4064, or infected with live SARS-CoV-2 (2019-nCoV/USA_WA1/2020). Changes in mRNA, protein, or secreted cytokines were measured by qPCR, Western blotting, and ELISA. Treatment of undifferentiated colonic or ileal enteroids with OCA increased ACE2 mRNA by 2.1 ± 0.4-fold (n = 3; P = 0.08) and 2.3 ± 0.2-fold (n = 3; P < 0.05), respectively. In contrast, ACE2 expression in differentiated enteroids was not significantly altered. FXR activation in cultured epithelial monolayers also upregulated ACE2 mRNA, accompanied by increases in ACE2 expression and secretion. Further experiments revealed FXR activation to inhibit IL-6 release from both Caco-2 cells infected with SARS-CoV-2 and T84 cells treated with the viral mimic, polyinosinic:polycytidylic acid, by 46 ± 12% (n = 3, P < 0.05) and 35 ± 6% (n = 8; P < 0.01), respectively. By virtue of its ability to modulate epithelial ACE2 expression and inhibit virus-mediated proinflammatory cytokine release, FXR represents a promising target for the development of new approaches to prevent intestinal manifestations of SARS-CoV-2.NEW & NOTEWORTHY Activation of the nuclear bile acid receptor, farnesoid X receptor (FXR), specifically upregulates ACE2 expression in undifferentiated colonic epithelial cells and inhibits virus-induced proinflammatory cytokine release. By virtue of these actions FXR represents a promising target for the development of new approaches to prevent intestinal manifestations of SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Interleukin-6 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Caco-2 Cells , Cytokines , Interleukin-6/metabolism , RNA, Messenger , SARS-CoV-2 , Receptors, Cytoplasmic and Nuclear/metabolism
6.
Mol Cell Biochem ; 478(8): 1771-1777, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36566486

ABSTRACT

Sulfate is essential for healthy foetal growth and neurodevelopment. The SLC13A1 sulfate transporter is primarily expressed in the kidney where it mediates sulfate reabsorption and maintains circulating sulfate levels. To meet foetal demands, maternal sulfate levels increase by twofold in pregnancy via upregulated SLC13A1 expression. Previous studies found hyposulfataemia and reduced renal Slc13a1 mRNA expression in rodent models with either severe vitamin D deficiency or perturbed vitamin D signalling. Here we investigated a mouse model of moderate vitamin D deficiency. However, serum sulfate level and renal Slc13a1 mRNA expression was not decreased by a moderate reduction in circulating vitamin D level. We confirmed that the mouse Slc13a1 5'-flanking region was upregulated by 1,25(OH)2D3 using luciferase assays in a cultured renal OK cell line. These results support the presence of a functional VDRE in the mouse Slc13a1 but suggests that moderate vitamin D deficiency does not impact on sulfate homeostasis. As sulfate biology is highly conserved between rodents and humans, we proposed that human SLC13A1 would be under similar transcriptional regulation by 1,25(OH)2D3. Using an online prediction tool we identified a putative VDRE in the SLC13A1 5'-flanking region but unlike the mouse Slc13a1 sequence, the human sequence did not confer a significant response to 1,25(OH)2D3 in vitro. Overall, this study suggests that moderate vitamin D deficiency may not alter sulfate homeostasis. This needs to be confirmed in humans, particularly during pregnancy when vitamin D and sulfate levels need to be maintained at high levels for healthy maternal and child outcomes.


Subject(s)
Vitamin D Deficiency , Vitamin D , Pregnancy , Female , Child , Humans , Mice , Animals , Gene Expression Regulation , Vitamin D Deficiency/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sulfates/metabolism
7.
J Lipid Res ; 63(9): 100261, 2022 09.
Article in English | MEDLINE | ID: mdl-35934110

ABSTRACT

Cyp2c70 is the liver enzyme in rodents responsible for synthesis of the primary 6-hydroxylated muricholate bile acid (BA) species. Cyp2c70 KO mice are devoid of protective, hydrophilic muricholic acids, leading to a more human-like BA composition and subsequent cholestatic liver injury. Pharmacological inhibition of the ileal BA transporter (IBAT) has been shown to be therapeutic in cholestatic models. Here, we aimed to determine if IBAT inhibition with SC-435 is protective in Cyp2c70 KO mice. As compared to WT mice, we found male and female Cyp2c70 KO mice exhibited increased levels of serum liver injury markers, and our evaluation of liver histology revealed increased hepatic inflammation, macrophage infiltration, and biliary cell proliferation. We demonstrate serum and histologic markers of liver damage were markedly reduced with SC-435 treatment. Additionally, we show hepatic gene expression in pathways related to immune cell activation and inflammation were significantly upregulated in Cyp2c70 KO mice and reduced to levels indistinguishable from WT with IBAT inhibition. In Cyp2c70 KO mice, the liver BA content was significantly increased, enriched in chenodeoxycholic acid, and more hydrophobic, exhibiting a hydrophobicity index value and red blood cell lysis properties similar to human liver BAs. Furthermore, we determined IBAT inhibition reduced the total hepatic BA levels but did not affect overall hydrophobicity of the liver BAs. These findings suggest that there may be a threshold in the liver for pathological accretion of hydrophobic BAs and reducing hepatic BA accumulation can be sufficient to alleviate liver injury, independent of BA pool hydrophobicity.


Subject(s)
Cholestasis , Liver , Animals , Bile Acids and Salts/metabolism , Carrier Proteins , Chenodeoxycholic Acid/metabolism , Cholestasis/metabolism , Cyclic N-Oxides , Female , Humans , Inflammation/metabolism , Liver/metabolism , Male , Membrane Glycoproteins , Mice , Tropanes
8.
PLoS Pathog ; 13(2): e1006218, 2017 02.
Article in English | MEDLINE | ID: mdl-28192541

ABSTRACT

Mucins are heavily glycosylated proteins that give mucus its gel-like properties. Moreover, the glycans decorating the mucin protein core can alter the protective properties of the mucus barrier. To investigate whether these alterations could be parasite-induced we utilized the Trichuris muris (T. muris) infection model, using different infection doses and strains of mice that are resistant (high dose infection in BALB/c and C57BL6 mice) or susceptible (high dose infection in AKR and low dose infection in BALB/c mice) to chronic infection by T. muris. During chronicity, within the immediate vicinity of the T. muris helminth the goblet cell thecae contained mainly sialylated mucins. In contrast, the goblet cells within the epithelial crypts in the resistant models contained mainly sulphated mucins. Maintained mucin sulphation was promoted by TH2-immune responses, in particular IL-13, and contributed to the protective properties of the mucus layer, making it less vulnerable to degradation by T. muris excretory secretory products. Mucin sulphation was markedly reduced in the caecal goblet cells in the sulphate anion transporter-1 (Sat-1) deficient mice. We found that Sat-1 deficient mice were susceptible to chronic infection despite a strong TH2-immune response. Lower sulphation levels lead to decreased efficiency of establishment of T. muris infection, independent of egg hatching. This study highlights the complex process by which immune-regulated alterations in mucin glycosylation occur following T. muris infection, which contributes to clearance of parasitic infection.


Subject(s)
Mucins/chemistry , Mucins/immunology , Trichuriasis/immunology , Animals , Disease Models, Animal , Glycosylation , Goblet Cells/chemistry , Goblet Cells/immunology , Humans , Immunohistochemistry , Intestinal Mucosa/chemistry , Intestinal Mucosa/immunology , Mice , Mice, Inbred AKR , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Fluorescence , Polymerase Chain Reaction , Trichuris/immunology
9.
Hepatology ; 68(2): 590-598, 2018 08.
Article in English | MEDLINE | ID: mdl-28898457

ABSTRACT

Primary bile acid malabsorption is associated with congenital diarrhea, steatorrhea, and a block in the intestinal return of bile acids in the enterohepatic circulation. Mutations in the ileal apical sodium-dependent bile acid transporter (ASBT; SLC10A2) can cause primary bile acid malabsorption but do not appear to account for most familial cases. Another major transporter involved in the intestinal reclamation of bile acids is the heteromeric organic solute transporter alpha-beta (OSTα-OSTß; SLC51A-SLC51B), which exports bile acid across the basolateral membrane. Here we report the first patients with OSTß deficiency, clinically characterized by chronic diarrhea, severe fat soluble vitamin deficiency, and features of cholestatic liver disease including elevated serum gamma-glutamyltransferase activity. Whole exome sequencing revealed a homozygous single nucleotide deletion in codon 27 of SLC51B, resulting in a frameshift and premature termination at codon 50. Functional studies in transfected cells showed that the SLC51B mutation resulted in markedly reduced taurocholic acid uptake activity and reduced expression of the OSTα partner protein. CONCLUSION: The findings identify OSTß deficiency as a cause of congenital chronic diarrhea with features of cholestatic liver disease. These studies underscore OSTα-OSTß's key role in the enterohepatic circulation of bile acids in humans. (Hepatology 2017).


Subject(s)
Bile Acids and Salts/metabolism , Cholestasis/etiology , Diarrhea/etiology , Membrane Transport Proteins/deficiency , Steatorrhea/genetics , Bile Acids and Salts/genetics , Child , Child, Preschool , Cholestasis/genetics , Diarrhea/diagnosis , Diarrhea/genetics , Humans , Male , Membrane Transport Proteins/genetics , Mutation , Pedigree , Siblings , Steatorrhea/diagnosis , Exome Sequencing
10.
Hepatology ; 65(1): 350-362, 2017 01.
Article in English | MEDLINE | ID: mdl-27358174

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide and an important risk factor for both hepatic and cardiometabolic mortality. The rapidly increasing prevalence of this disease and of its aggressive form nonalcoholic steatohepatitis (NASH) will require novel therapeutic approaches to prevent disease progression to advanced fibrosis or cirrhosis and cancer. In recent years, bile acids have emerged as relevant signaling molecules that act at both hepatic and extrahepatic tissues to regulate lipid and carbohydrate metabolic pathways as well as energy homeostasis. Activation or modulation of bile acid receptors, such as the farnesoid X receptor and TGR5, and transporters, such as the ileal apical sodium-dependent bile acid transporter, appear to affect both insulin sensitivity and NAFLD/NASH pathogenesis at multiple levels, and these approaches hold promise as novel therapies. In the present review, we summarize current available data on the relationships of bile acids to NAFLD and the potential for therapeutically targeting bile-acid-related pathways to address this growing world-wide disease. (Hepatology 2017;65:350-362).


Subject(s)
Bile Acids and Salts/physiology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Energy Metabolism , Glucose/metabolism , Humans , Inflammation/etiology , Lipid Metabolism , Liver , Microbiota , Non-alcoholic Fatty Liver Disease/genetics , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, G-Protein-Coupled , Signal Transduction
11.
J Neurogenet ; 32(1): 6-14, 2018 03.
Article in English | MEDLINE | ID: mdl-29199528

ABSTRACT

Non-syndromic intellectual disability (NS-ID) is a genetically heterogeneous disorder, with more than 200 candidate genes to date. Despite the increasing number of novel mutations detected, a relatively low number of recurrently mutated genes have been identified, highlighting the complex genetic architecture of the disorder. A systematic search of PubMed and Medline identified 245 genes harbouring non-synonymous variants, insertions or deletions, which were identified as candidate NS-ID genes from case reports or from linkage or pedigree analyses. From this list, 33 genes are common to syndromic intellectual disability (S-ID) and 58 genes are common to certain neurological and neuropsychiatric disorders that often include intellectual disability as a clinical feature. We examined the evolutionary constraint and brain expression of these gene sets, and we performed gene network and protein-protein interaction analyses using GeneGO MetaCoreTM and DAPPLE, respectively. The 245 NS-ID candidate genes were over-represented in axon guidance, synaptogenesis, cell adhesion and neurotransmission pathways, all of which are key neurodevelopmental processes for the establishment of mature neuronal circuitry in the brain. These 245 genes exhibit significantly elevated expression in human brain and are evolutionarily constrained, consistent with expectations for a brain disorder such as NS-ID that is associated with reduced fecundity. In addition, we report enrichment of dopaminergic and glutamatergic pathways for those candidate NS-ID genes that are common to S-ID and/or neurological and neuropsychiatric disorders that exhibit intellectual disability. Collectively, this study provides an overview and analysis of gene networks associated with NS-ID and suggests modulation of neurotransmission, particularly dopaminergic and glutamatergic systems as key contributors to synaptic dysfunction in NS-ID.


Subject(s)
Gene Regulatory Networks , Intellectual Disability/genetics , Humans
12.
BMC Pediatr ; 18(1): 284, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30149807

ABSTRACT

BACKGROUND: The phenotypic and genetic heterogeneity of autism spectrum disorder (ASD) presents considerable challenges in understanding etiological pathways, selecting effective therapies, providing genetic counselling, and predicting clinical outcomes. With advances in genetic and biological research alongside rapid-pace technological innovations, there is an increasing imperative to access large, representative, and diverse cohorts to advance knowledge of ASD. To date, there has not been any single collective effort towards a similar resource in Australia, which has its own unique ethnic and cultural diversity. The Australian Autism Biobank was initiated by the Cooperative Research Centre for Living with Autism (Autism CRC) to establish a large-scale repository of biological samples and detailed clinical information about children diagnosed with ASD to facilitate future discovery research. METHODS: The primary group of participants were children with a confirmed diagnosis of ASD, aged between 2 and 17 years, recruited through four sites in Australia. No exclusion criteria regarding language level, cognitive ability, or comorbid conditions were applied to ensure a representative cohort was recruited. Both biological parents and siblings were invited to participate, along with children without a diagnosis of ASD, and children who had been queried for an ASD diagnosis but did not meet diagnostic criteria. All children completed cognitive assessments, with probands and parents completing additional assessments measuring ASD symptomatology. Parents completed questionnaires about their child's medical history and early development. Physical measurements and biological samples (blood, stool, urine, and hair) were collected from children, and physical measurements and blood samples were collected from parents. Samples were sent to a central processing site and placed into long-term storage. DISCUSSION: The establishment of this biobank is a valuable international resource incorporating detailed clinical and biological information that will help accelerate the pace of ASD discovery research. Recruitment into this study has also supported the feasibility of large-scale biological sample collection in children diagnosed with ASD with comprehensive phenotyping across a wide range of ages, intellectual abilities, and levels of adaptive functioning. This biological and clinical resource will be open to data access requests from national and international researchers to support future discovery research that will benefit the autistic community.


Subject(s)
Autism Spectrum Disorder/epidemiology , Biological Specimen Banks , Australia , Autism Spectrum Disorder/genetics , Biomedical Research , Blood Specimen Collection , Child , Child, Preschool , Clinical Protocols , Feces , Hair , Humans , Phenotype , Psychological Tests , Surveys and Questionnaires , Urinalysis
13.
Mol Genet Metab ; 121(1): 35-42, 2017 05.
Article in English | MEDLINE | ID: mdl-28385533

ABSTRACT

The solute linked carrier 13A4 gene (SLC13A4) is abundantly expressed in the human and mouse placenta where it is proposed to transport nutrient sulfate to the fetus. In mice, targeted disruption of placental Slc13a4 leads to severe and lethal fetal phenotypes, however the involvement of SLC13A4 in human development is unknown. A search of the NCBI and Ensembl gene databases identified two alternatively spliced SLC13A4 mRNA transcripts and 98 SLC13A4 gene variants, including 85 missense, 4 splice site, 5 frameshift and 2 nonsense variants, as well as 2 in-frame deletions. We examined the relative abundance of the two SLC13A4 mRNA transcripts and then compared the sulfate transport function and plasma membrane expression of both isoforms as well as 6 sequence variants that predict disrupted SLC13A4 protein structure and function. SLC13A4 mRNA variant 1 has three additional nucleotides CAG compared to SLC13A4 mRNA variant 2 as a result of alternative splicing at the 5'-end of exon 6. Using qRT-PCR, we show a 4-fold higher abundance of SLC13A4 mRNA variant 1 compared to variant 2 in term human placentas and cultured BeWo and JEG-3 cell lines. The corresponding SLC13A4 protein isoforms 1 and 2 were found to have similar sulfate uptake activity and apical membrane expression in cultured MDCK cells. In addition, sulfate uptake into MDCK cells was similar between SLC13A4 isoform 1 and four missense variants N300S, F310C, E360Q and I570V, whereas V513M and frameshift variant L72Sfs led to partial (≈75% decrease) and complete loss-of-function, respectively. Localisation of these variants in MDCK cells showed N300S, E360Q, V513M and I570V expression on the apical plasma membrane, L72Sfs intracellularly and F310C on both apical and basolateral membranes. Our finding of partial and complete loss-of-function variants warrants further studies of the potential involvement of SLC13A4 in fetal pathophysiology.


Subject(s)
Alternative Splicing , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Cell Membrane/metabolism , Placenta/metabolism , Symporters/genetics , Symporters/metabolism , Animals , Anion Transport Proteins/chemistry , Cell Line , Computer Simulation , Dogs , Female , Genetic Variation , Humans , Madin Darby Canine Kidney Cells , Pregnancy , Protein Isoforms/metabolism , Sulfate Transporters , Sulfates/metabolism , Symporters/chemistry
14.
Dig Dis ; 35(3): 261-266, 2017.
Article in English | MEDLINE | ID: mdl-28249269

ABSTRACT

BACKGROUND: In addition to their classical role as detergents, bile acids function as signaling molecules to regulate gastrointestinal physiology, carbohydrate and lipid metabolism, and energy expenditure. The pharmacodynamic potential of bile acids is dependent in part on the tight pharmacokinetic control of their concentration and metabolism, properties governed by their hepatic synthesis, enterohepatic cycling, and biotransformation via host and gut microbiota-catalyzed pathways. Key Messages: By altering the normal cycling and compartmentalization of bile acids, changes in hepatobiliary or intestinal transport can affect signaling and lead to the retention of cytotoxic hydrophobic bile acids and cell injury. This review discusses advances in our understanding of the intestinal transporters that maintain the enterohepatic cycling of bile acids, signaling via bile acid-activated nuclear and G protein receptors, and mechanisms of bile acid-induced cell injury. CONCLUSIONS: Dysregulated expression of the Asbt and Ostα-Ostß alters bile acid signaling via the gut-liver farnesoid X receptor-fibroblast growth factor 15/19 axis and may contribute to other bile acid-regulated metabolic and cell injury pathways.


Subject(s)
Bile Acids and Salts/metabolism , Ileum/metabolism , Membrane Transport Proteins/metabolism , Signal Transduction , Animals , Cytoprotection , Enterohepatic Circulation , Feedback, Physiological , Humans
15.
Hepatol Res ; 46(8): 794-803, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26510996

ABSTRACT

AIM: Slc10a6, an incompletely characterized member of the SLC10A bile acid transporter family, was one of the most highly induced RNA transcripts identified in a screen for inflammation-responsive genes in mouse liver. This study aimed to elucidate a role for Slc10a6 in hepatic inflammation. METHODS: Mice were treated with lipopolysaccharide (LPS; 2 mg/kg) or interleukin (IL)-1ß (5 mg/kg) for various time points. Cells were treated with LPS (1 µg/mL) at various time points, with cell signaling inhibitors, nuclear receptor ligands and Slc10a6 substrates. All mRNA levels were determined by quantitative polymerase chain reaction. RESULTS: Slc10a6 mRNA levels were upregulated in mouse liver at 2 h (7-fold), 4 h (100-fold) and 16 h (50-fold) after LPS treatment, and 35-fold by the cytokine IL-1ß (4 h). Both absence of the nuclear receptor Fxr and pretreating mice with the synthetic retinoid X receptor-α ligand LG268 attenuated the LPS upregulation of Slc10a6 mRNA by 60-75%. In vitro, Slc10a6 mRNA was induced 30-fold by LPS in mouse RAW264.7 macrophages in a time-dependent manner (maximum at 8 h). The Slc10a6 substrate dehydroepiandrosterone sulfate (DHEAS) enhanced LPS induction of CCL5 mRNA, a pro-inflammatory chemokine, by 50% in RAW264.7 cells. This effect was abrogated in the presence of anti-inflammatory nuclear receptor ligands 9-cis-retinoic acid and dexamethasone. CONCLUSION: Dramatic upregulation of Slc10a6 mRNA by LPS combined with enhanced LPS stimulation of CCL5 expression by the Slc10a6 substrate DHEAS in macrophages suggests that Slc10a6 function contributes to the hepatic inflammatory response.

16.
J Lipid Res ; 56(6): 1085-99, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25210150

ABSTRACT

In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling.


Subject(s)
Bile Acids and Salts/metabolism , Enterohepatic Circulation , Lipid Metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Hepatocytes/metabolism , Homeostasis/genetics , Intestinal Mucosa/metabolism , Microbiota/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics
17.
Carcinogenesis ; 36(10): 1193-200, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26210740

ABSTRACT

Although epidemiological evidence in humans and bile acid feeding studies in rodents implicate bile acids as tumor promoters, the role of endogenous bile acids in colon carcinogenesis remains unclear. In this study, we exploited mice deficient in the ileal apical sodium-dependent bile acid transporter (ASBT, encoded by SLC10A2) in whom fecal bile acid excretion is augmented more than 10-fold. Wild-type and Asbt-deficient (Slc10a2 (-/-) ) male mice were treated with azoxymethane (AOM) alone to examine the development of aberrant crypt foci, the earliest histological marker of colon neoplasia and a combination of AOM and dextran sulfate sodium to induce colon tumor formation. Asbt-deficient mice exhibited a 54% increase in aberrant crypt foci, and 70 and 59% increases in colon tumor number and size, respectively. Compared to littermate controls, Asbt-deficient mice had a striking, 2-fold increase in the number of colon adenocarcinomas. Consistent with previous studies demonstrating a role for muscarinic and epidermal growth factor receptor signaling in bile acid-induced colon neoplasia, increasing bile acid malabsorption was associated with M3 muscarinic and epidermal growth factor receptor expression, and activation of extracellular signal-related kinase, a key post-receptor signaling molecule.


Subject(s)
Bile Acids and Salts/toxicity , Colonic Neoplasms/metabolism , Ileum/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Animals , Bile Acids and Salts/genetics , Bile Acids and Salts/metabolism , Colonic Neoplasms/etiology , Colonic Neoplasms/pathology , Disease Models, Animal , Feces , Humans , Ileum/pathology , Mice , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/metabolism , Signal Transduction/drug effects , Symporters/metabolism
18.
Am J Physiol Gastrointest Liver Physiol ; 308(3): G217-22, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25477376

ABSTRACT

Indomethacin is a powerful analgesic nonsteroidal anti-inflammatory drug (NSAID), but is limited in use by its primary side effect to cause gastrointestinal bleeding and serious injury. One factor important for exacerbating NSAID injury is the presence of bile acids, which may interact with indomethacin to form toxic mixed micelles in the gut. The development of a safer gastrointestinal formulation of indomethacin that is chemically complexed with phosphatidylcholine (PC-indomethacin) may offer an improved therapeutic agent, particularly in the presence of bile acid, but its potential protective mechanism is incompletely understood. Intestinal epithelial cells (IEC-6) were tested for injury with indomethacin (alone and plus various bile acids) compared with PC-indomethacin (alone and plus bile acids). To explore a role for bile acid uptake into cells as a requirement for NSAID injury, studies were performed using Madin-Darby canine kidney cells transfected with the apical sodium-dependent bile acid transporter (ASBT). Indomethacin, but not PC-indomethacin, was directly and dose-dependently injurious to IEC-6 cells. Similarly, the combination of any bile acid plus indomethacin, but not PC-indomethacin, induced cell injury. The expression of ASBT had a modest effect on the acute cytotoxicity of indomethacin in the presence of some conjugated bile acids. Complexing PC with indomethacin protected against the acute intestinal epithelial injury caused by indomethacin regardless of the presence of bile acids. The presence of luminal bile acid, but not its carrier-mediated uptake into the enterocyte, is required for acute indomethacin-induced cell injury. It is likely that initial cell damage induced by indomethacin occurs at or near the cell membrane, an effect exacerbated by bile acids and attenuated by PC.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bile Acids and Salts/toxicity , Gastrointestinal Hemorrhage/drug therapy , Indomethacin/toxicity , Phosphatidylcholines/pharmacology , Animals , Cell Membrane/drug effects , Gastrointestinal Agents/pharmacology , Gastrointestinal Hemorrhage/chemically induced , Mice , Organic Anion Transporters, Sodium-Dependent/drug effects , Symporters/drug effects
19.
Gastroenterology ; 146(4): 1006-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24389307

ABSTRACT

BACKGROUND & AIMS: Sirtuin 1 (SIRT1), the most conserved mammalian oxidized nicotinamide adenine dinucleotide-dependent protein deacetylase, is an important metabolic sensor in many tissues. However, little is known about its role in the small intestine, which absorbs and senses nutrients. We investigated the functions of intestinal SIRT1 in systemic bile acid and cholesterol metabolism in mice. METHODS: SIRT1 was specifically deleted from the intestines of mice using the flox-Villin-Cre system (SIRT1 iKO mice). Intestinal and hepatic tissues were collected, and bile acid absorption was analyzed using the everted gut sac experiment. Systemic bile acid metabolism was studied in SIRT1 iKO and flox control mice placed on standard diets, diets containing 0.5% cholic acid or 1.25% cholesterol, or lithogenic diets. RESULTS: SIRT1 iKO mice had reduced intestinal farnesoid X receptor (FXR) signaling via hepatocyte nuclear factor 1α (HNF-1α) compared with controls, which reduced expression of the bile acid transporter genes Asbt and Mcf2l (encodes Ost) and absorption of ileal bile acids. SIRT1 regulated HNF-1α/FXR signaling partially through dimerization cofactor of HNF-1a (Dcoh2) Dcoh2, which increases dimerization of HNF-1α. SIRT1 was found to deacetylate Dcoh2, promoting its interaction with HNF-1α and inducing DNA binding by HNF-1α. Intestine-specific deletion of SIRT1 increased hepatic bile acid biosynthesis, reduced hepatic accumulation of bile acids, and protected animals from liver damage from a diet high in levels of bile acids. CONCLUSIONS: Intestinal SIRT1, a key nutrient sensor, is required for ileal bile acid absorption and systemic bile acid homeostasis in mice. We delineated the mechanism of metabolic regulation of HNF-1α/FXR signaling. Reagents designed to inhibit intestinal SIRT1 might be developed to treat bile acid-related diseases such as cholestasis.


Subject(s)
Bile Acids and Salts/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hydro-Lyases/metabolism , Intestines/enzymology , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Sirtuin 1/deficiency , Animals , Cholesterol, Dietary/metabolism , Cholic Acid/metabolism , Feces/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Homeostasis , Ileum/enzymology , Intestinal Absorption , Liver/enzymology , Liver/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/metabolism , Rho Guanine Nucleotide Exchange Factors , Sirtuin 1/genetics , Symporters/metabolism
20.
Dig Dis ; 33(3): 382-7, 2015.
Article in English | MEDLINE | ID: mdl-26045273

ABSTRACT

BACKGROUND: Bile acid sequestrants have been used for many years to treat hypercholesterolemia by increasing hepatic conversion of cholesterol to bile acids, thereby inducing hepatic LDL receptor expression and clearance of apoB-containing particles. In order to further understand the underlying molecular mechanisms linking gut-liver signaling and cholesterol homeostasis, mouse models defective in ileal apical membrane bile acid transport (Asbt-null) and ileal basolateral membrane bile acid transport (Ostα-null) were studied under basal and hypercholesterolemic conditions. KEY MESSAGES: Hepatic conversion of cholesterol to bile acids is the major pathway for cholesterol catabolism and a major mechanism for cholesterol elimination. Blocking ileal apical membrane bile acid transport (Asbt-null mice) increases fecal bile acid excretion, hepatic Cyp7a1 expression, and the relative proportion of taurocholate in the bile acid pool, but decreases ileal FGF15 expression, bile acid pool size, and hepatic cholesterol content. In contrast, blocking ileal basolateral membrane bile acid transport (Ostα-null mice) increases ileal FGF15 expression, reduces hepatic Cyp7a1 expression, and increases the proportion of tauro-ß-muricholic acid in the bile acid pool. In the hypercholesterolemic apoE-null background, plasma cholesterol levels and measurements of atherosclerosis were reduced in Asbt/apoE-null mice, but not in Ostα/apoE-null mice. CONCLUSIONS: Blocking the intestinal absorption of bile acids at the apical versus basolateral membrane differentially affects bile acid and cholesterol metabolism, including the development of hypercholesterolemia-associated atherosclerosis. The molecular mechanism likely involves an altered regulation of ileal FGF15 expression.


Subject(s)
Atherosclerosis/metabolism , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Hypercholesterolemia/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Bile Acids and Salts/analysis , Cholesterol/analysis , Cholesterol 7-alpha-Hydroxylase/metabolism , Feces/chemistry , Fibroblast Growth Factors/metabolism , Gene Expression , Hypercholesterolemia/genetics , Ileum/metabolism , Liver/metabolism , Mice , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , Symporters/metabolism , Taurocholic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL