Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 111(2): 393-402, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38272031

ABSTRACT

Sterile alpha motif domain containing 7 (SAMD7) is a component of the Polycomb repressive complex 1, which inhibits transcription of many genes, including those activated by the transcription factor Cone-Rod Homeobox (CRX). Here we report bi-allelic mutations in SAMD7 as a cause of autosomal-recessive macular dystrophy with or without cone dysfunction. Four of these mutations affect splicing, while another mutation is a missense variant that alters the repressive effect of SAMD7 on CRX-dependent promoter activity, as shown by in vitro assays. Immunostaining of human retinal sections revealed that SAMD7 is localized in the nuclei of both rods and cones, as well as in those of cells belonging to the inner nuclear layer. These results place SAMD7 as a gene crucial for human retinal function and demonstrate a significant difference in the role of SAMD7 between the human and the mouse retina.


Subject(s)
Eye Abnormalities , Macular Degeneration , Mice , Animals , Humans , Trans-Activators/genetics , Homeodomain Proteins/genetics , Retina , Mutation/genetics , Macular Degeneration/genetics
2.
Am J Hum Genet ; 109(3): 498-507, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120629

ABSTRACT

Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies. We used the sum allele frequencies of these severity categories to estimate recurrence risks for offspring of STGD1-affected individuals and carriers of pathogenic ABCA4 variants. The risk for offspring of an STGD1-affected individual with the "severe|severe" genotype or a "severe|mild with complete penetrance" genotype to develop STGD1 at some moment in life was estimated at 2.8%-3.1% (1 in 36-32 individuals) and 1.6%-1.8% (1 in 62-57 individuals), respectively. The risk to develop STGD1 in childhood was estimated to be 2- to 4-fold lower: 0.68%-0.79% (1 in 148-126) and 0.34%-0.39% (1 in 296-252), respectively. In conclusion, we established personalized recurrence risk calculations for STGD1-affected individuals with different combinations of variants. We thus propose an expanded genotype-based personalized counseling to appreciate the variable recurrence risks for STGD1-affected individuals. This represents a conceptual breakthrough because risk calculations for STGD1 may be exemplary for many other inherited diseases.


Subject(s)
ATP-Binding Cassette Transporters , Genetic Counseling , ATP-Binding Cassette Transporters/genetics , Cross-Sectional Studies , Humans , Mutation , Stargardt Disease/genetics
3.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36243009

ABSTRACT

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Subject(s)
Corneal Dystrophies, Hereditary , Tomography, Optical Coherence , Adult , Animals , Humans , Pedigree , Retina/metabolism , Xenopus laevis/genetics
4.
Mol Ther ; 32(3): 837-851, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38243599

ABSTRACT

The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.


Subject(s)
ATP-Binding Cassette Transporters , RNA Splicing , Humans , ATP-Binding Cassette Transporters/genetics , Stargardt Disease/genetics , Mutation , Photoreceptor Cells
5.
Clin Genet ; 106(2): 127-139, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38468396

ABSTRACT

Leber congenital amaurosis (LCA) and early-onset retinal degeneration (EORD) are inherited retinal diseases (IRD) characterized by early-onset vision impairment. Herein, we studied 15 Saudi families by whole exome sequencing (WES) and run-of-homozygosity (ROH) detection via AutoMap in 12/15 consanguineous families. This revealed (likely) pathogenic variants in 11/15 families (73%). A potential founder variant was found in RPGRIP1. Homozygous pathogenic variants were identified in known IRD genes (ATF6, CRB1, CABP4, RDH12, RIMS2, RPGRIP1, SPATA7). We established genotype-driven clinical reclassifications for ATF6, CABP4, and RIMS2. Specifically, we observed isolated IRD in the individual with the novel RIMS2 variant, and we found a retina-enriched RIMS2 isoform conserved but not annotated in mouse. The latter illustrates potential different phenotypic consequences of pathogenic variants depending on the particular tissue/cell-type specific isoforms they affect. Lastly, a compound heterozygous genotype in GUCY2D in one non-consanguineous family was demonstrated, and homozygous variants in novel candidate genes ATG2B and RUFY3 were found in the two remaining consanguineous families. Reporting these genes will allow to validate them in other IRD cohorts. Finally, the missing heritability of the two unsolved IRD cases may be attributed to variants in non-coding regions or structural variants that remained undetected, warranting future WGS studies.


Subject(s)
Consanguinity , Exome Sequencing , Pedigree , Phenotype , Humans , Female , Male , Retina/pathology , Homozygote , Retinal Diseases/genetics , Protein Isoforms/genetics , Exome/genetics , Mutation , Child , Genetic Predisposition to Disease , Leber Congenital Amaurosis/genetics , Cohort Studies , Genotype , Genetic Association Studies/methods
6.
Am J Hum Genet ; 106(6): 859-871, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32470375

ABSTRACT

Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD.


Subject(s)
Eye Diseases, Hereditary/genetics , GTP-Binding Proteins/genetics , Genetic Diseases, X-Linked/genetics , Loss of Function Mutation , Myopia/genetics , Nerve Tissue Proteins/genetics , Night Blindness/genetics , Adult , Alleles , Alternative Splicing , Brain/metabolism , Cell Line , Child , Child, Preschool , Diagnosis, Differential , Family Health , Female , France , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Glucose/metabolism , Humans , Insulin Secretion , Male , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Pancreas/metabolism , Pedigree , Retina/metabolism , Saudi Arabia , Senegal
7.
Clin Genet ; 103(6): 709-713, 2023 06.
Article in English | MEDLINE | ID: mdl-36896710

ABSTRACT

Epidermal nevus syndrome (ENS) comprises a heterogeneous group of neurocutaneous syndromes associated with the presence of epidermal nevi and variable extracutaneous manifestations. Postzygotic activating HRAS pathogenic variants were previously identified in nevus sebaceous (NS), keratinocytic epidermal nevus (KEN), and different ENS, including Schimmelpenning-Feuerstein-Mims and cutaneous-skeletal-hypophosphatasia syndrome (CSHS). Skeletal involvement in HRAS-related ENS ranges from localized bone dysplasia in association with KEN to fractures and limb deformities in CSHS. We describe the first association of HRAS-related ENS and auricular atresia, thereby expanding the disease spectrum with first branchial arch defects if affected by the mosaic variant. In addition, this report illustrates the first concurrent presence of verrucous EN, NS, and nevus comedonicus (NC), indicating the possibility of mosaic HRAS variation as an underlying cause of NC. Overall, this report extends the pleiotropy of conditions associated with mosaic pathogenic variants in HRAS affecting ectodermal and mesodermal progenitor cells.


Subject(s)
Nevus , Skin Neoplasms , Humans , Syndrome , Branchial Region/pathology , Nevus/pathology , Proto-Oncogene Proteins p21(ras)
8.
Proc Natl Acad Sci U S A ; 117(16): 9001-9012, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32265282

ABSTRACT

The interplay of transcription factors and cis-regulatory elements (CREs) orchestrates the dynamic and diverse genetic programs that assemble the human central nervous system (CNS) during development and maintain its function throughout life. Genetic variation within CREs plays a central role in phenotypic variation in complex traits including the risk of developing disease. We took advantage of the retina, a well-characterized region of the CNS known to be affected by pathogenic variants in CREs, to establish a roadmap for characterizing regulatory variation in the human CNS. This comprehensive analysis of tissue-specific regulatory elements, transcription factor binding, and gene expression programs in three regions of the human visual system (retina, macula, and retinal pigment epithelium/choroid) reveals features of regulatory element evolution that shape tissue-specific gene expression programs and defines regulatory elements with the potential to contribute to Mendelian and complex disorders of human vision.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Developmental , Regulatory Sequences, Nucleic Acid/genetics , Retina/pathology , Retinal Diseases/genetics , Adult , Animals , DNA Mutational Analysis , Epigenomics , Female , Genetic Variation , Humans , Male , Mice , Middle Aged , Mutation , RNA-Seq , Retina/growth & development , Retinal Diseases/pathology , Species Specificity
9.
Hum Mutat ; 43(7): 832-858, 2022 07.
Article in English | MEDLINE | ID: mdl-35332618

ABSTRACT

Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.


Subject(s)
Color Vision Defects , Cyclic Nucleotide-Gated Cation Channels , Color Vision Defects/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , Humans , Mutation , Retinal Cone Photoreceptor Cells
10.
J Clin Immunol ; 42(5): 962-974, 2022 07.
Article in English | MEDLINE | ID: mdl-35320431

ABSTRACT

BACKGROUND: Aicardi-Goutières syndrome (AGS) is a type I interferonopathy usually characterized by early-onset neurologic regression. Biallelic mutations in LSM11 and RNU7-1, components of the U7 small nuclear ribonucleoprotein (snRNP) complex, have been identified in a limited number of genetically unexplained AGS cases. Impairment of U7 snRNP function results in misprocessing of replication-dependent histone (RDH) pre-mRNA and disturbance of histone occupancy of nuclear DNA, ultimately driving cGAS-dependent type I interferon (IFN-I) release. OBJECTIVE: We performed a clinical, genetic, and immunological workup of 3 unrelated patients with uncharacterized AGS. METHODS: Whole exome sequencing (WES) and targeted Sanger sequencing of RNU7-1 were performed. Primary fibroblasts were used for mechanistic studies. IFN-I signature and STAT1/2 phosphorylation were assessed in peripheral blood. Cytokines were profiled on serum and cerebrospinal fluid (CSF). Histopathology was examined on brain and kidney tissue. RESULTS: Sequencing revealed compound heterozygous RNU7-1 mutations, resulting in impaired RDH pre-mRNA processing. The 3' stem-loop mutations reduced stability of the secondary U7 snRNA structure. A discrete IFN-I signature in peripheral blood was paralleled by MCP-1 (CCL2) and CXCL10 upregulation in CSF. Histopathological analysis of the kidney showed thrombotic microangiopathy. We observed dysregulated STAT phosphorylation upon cytokine stimulation. Clinical overview of all reported patients with RNU7-1-related disease revealed high mortality and high incidence of organ involvement compared to other AGS genotypes. CONCLUSIONS: Targeted RNU7-1 sequencing is recommended in genetically unexplained AGS cases. CSF cytokine profiling represents an additional diagnostic tool to identify aberrant IFN-I signaling. Clinical follow-up of RNU7-1-mutated patients should include screening for severe end-organ involvement including liver disease and nephropathy.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , RNA, Small Nuclear/genetics , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/genetics , Chemokine CXCL10/genetics , Histones , Humans , Interferons , Mutation , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , RNA , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA-Binding Proteins/genetics
11.
Ophthalmology ; 129(2): 191-202, 2022 02.
Article in English | MEDLINE | ID: mdl-34624300

ABSTRACT

PURPOSE: To describe the natural course, phenotype, and genotype of patients with X-linked retinoschisis (XLRS). DESIGN: Retrospective cohort study. PARTICIPANTS: Three hundred forty patients with XLRS from 178 presumably unrelated families. METHODS: This multicenter, retrospective cohort study reviewed medical records of patients with XLRS for medical history, symptoms, visual acuity (VA), ophthalmoscopy, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain [SD] OCT, fundus autofluorescence). MAIN OUTCOME MEASURES: Age at onset, age at diagnosis, severity of visual impairment, annual visual decline, and electroretinography and imaging findings. RESULTS: Three hundred forty patients were included with a mean follow-up time of 13.2 years (range, 0.1-50.1 years). The median ages to reach mild visual impairment and low vision were 12 and 25 years, respectively. Severe visual impairment and blindness were observed predominantly in patients older than 40 years, with a predicted prevalence of 35% and 25%, respectively, at 60 years of age. The VA increased slightly during the first 2 decades of life and subsequently transitioned into an average annual decline of 0.44% (P < 0.001). No significant difference was found in decline of VA between variants that were predicted to be severe and mild (P = 0.239). The integrity of the ellipsoid zone (EZ) as well as the photoreceptor outer segment (PROS) length in the fovea on SD OCT correlated significantly with VA (Spearman's ρ = -0.759 [P < 0.001] and -0.592 [P = 0.012], respectively). Fifty-three different RS1 variants were found. The most common variants were the founder variant c.214G→A (p.(Glu72Lys)) (101 patients [38.7%]) and a deletion of exon 3 (38 patients [14.6%]). CONCLUSIONS: Large variabilities in phenotype and natural course of XLRS were seen in this study. In most patients, XLRS showed a slow deterioration starting in the second decade of life, suggesting an optimal window of opportunity for treatment within the first 3 decades of life. The integrity of EZ as well as the PROS length on SD OCT may be important in choosing optimal candidates for treatment and as potential structural end points in future therapeutic studies. No clear genotype-phenotype correlation was found.


Subject(s)
Eye Proteins/genetics , Retinoschisis/diagnosis , Retinoschisis/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Blindness/diagnosis , Blindness/physiopathology , Child , Child, Preschool , Electroretinography , Female , Follow-Up Studies , Genetic Association Studies , Humans , Infant , Male , Middle Aged , Ophthalmoscopy , Optical Imaging , Retina/diagnostic imaging , Retina/physiopathology , Retinal Photoreceptor Cell Outer Segment/pathology , Retinoschisis/physiopathology , Retrospective Studies , Tomography, Optical Coherence , Vision, Low/diagnosis , Vision, Low/physiopathology , Visual Acuity/physiology
12.
Hum Mutat ; 42(2): 164-176, 2021 02.
Article in English | MEDLINE | ID: mdl-33252155

ABSTRACT

Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.


Subject(s)
Eye Diseases, Hereditary , G-Protein-Coupled Receptor Kinase 1 , Night Blindness , Eye Diseases, Hereditary/genetics , G-Protein-Coupled Receptor Kinase 1/genetics , Humans , Night Blindness/genetics
13.
Mol Vis ; 27: 518-527, 2021.
Article in English | MEDLINE | ID: mdl-34526759

ABSTRACT

Purpose: To clinically and molecularly investigate a new family with North Carolina macular dystrophy (NCMD) from Turkey, a previously unreported geographic origin for this phenotype. Methods: Clinical ophthalmic examinations, including fundus imaging and spectral domain-optical coherence tomography (SD-OCT), were performed on eight members of a two-generation non-consanguineous family from southern Turkey. Whole genome sequencing (WGS) was performed on two affected subjects, followed by variant filtering and copy number variant (CNV) analysis. Junction PCR and Sanger sequencing were used to confirm and characterize the duplication involving PRDM13 at the nucleotide level. The underlying mechanism was assessed with in silico analyses. Results: The proband presented with lifelong bilateral vision impairment and displayed large grade 3 coloboma-like central macular lesions. Five of her six children showed similar macular malformations, consistent with autosomal dominant NCMD. The severity grades in the six affected individuals from two generations are not evenly distributed. CNV analysis of WGS data of the two affected family members, followed by junction PCR and Sanger sequencing, revealed a novel 56.2 kb tandem duplication involving PRDM13 (chr6:99560265-99616492dup, hg38) at the MCDR1 locus. This duplication cosegregates with the NCMD phenotype in the five affected children. No other (likely) pathogenic variants in known inherited retinal disease genes were found in the WGS data. Bioinformatics analyses of the breakpoints suggest a replicative-based repair mechanism underlying the duplication. Conclusions: We report a novel tandem duplication involving the PRDM13 gene in a family with NCMD from a previously unreported geographic region. The duplication size is the smallest that has been reported thus far and may correlate with the particular phenotype.


Subject(s)
Asian People/genetics , Corneal Dystrophies, Hereditary/genetics , Gene Duplication , Histone-Lysine N-Methyltransferase/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 6/genetics , Corneal Dystrophies, Hereditary/diagnostic imaging , Female , Genetic Linkage , Humans , Male , Pedigree , Polymerase Chain Reaction , Tomography, Optical Coherence , Turkey/epidemiology , Whole Genome Sequencing
14.
J Med Genet ; 57(9): 581-589, 2020 09.
Article in English | MEDLINE | ID: mdl-32303604

ABSTRACT

We present key points from the updated Dutch-Flemish guideline on comprehensive diagnostics in disorders/differences of sex development (DSD) that have not been widely addressed in the current (inter)national literature. These points are of interest to physicians working in DSD (expert) centres and to professionals who come across persons with a DSD but have no (or limited) experience in this area. The Dutch-Flemish guideline is based on internationally accepted principles. Recent initiatives striving for uniform high-quality care across Europe, and beyond, such as the completed COST action 1303 and the European Reference Network for rare endocrine conditions (EndoERN), have generated several excellent papers covering nearly all aspects of DSD. The Dutch-Flemish guideline follows these international consensus papers and covers a number of other topics relevant to daily practice. For instance, although next-generation sequencing (NGS)-based molecular diagnostics are becoming the gold standard for genetic evaluation, it can be difficult to prove variant causality or relate the genotype to the clinical presentation. Network formation and centralisation are essential to promote functional studies that assess the effects of genetic variants and to the correct histological assessment of gonadal material from DSD patients, as well as allowing for maximisation of expertise and possible cost reductions. The Dutch-Flemish guidelines uniquely address three aspects of DSD. First, we propose an algorithm for counselling and diagnostic evaluation when a DSD is suspected prenatally, a clinical situation that is becoming more common. Referral to ultrasound sonographers and obstetricians who are part of a DSD team is increasingly important here. Second, we pay special attention to healthcare professionals not working within a DSD centre as they are often the first to diagnose or suspect a DSD, but are not regularly exposed to DSDs and may have limited experience. Their thoughtful communication to patients, carers and colleagues, and the accessibility of protocols for first-line management and efficient referral are essential. Careful communication in the prenatal to neonatal period and the adolescent to adult transition are equally important and relatively under-reported in the literature. Third, we discuss the timing of (NGS-based) molecular diagnostics in the initial workup of new patients and in people with a diagnosis made solely on clinical grounds or those who had earlier genetic testing that is not compatible with current state-of-the-art diagnostics.


Subject(s)
Disorders of Sex Development/diagnosis , Pathology, Molecular , Rare Diseases/diagnosis , Sexual Development/genetics , Disorders of Sex Development/epidemiology , Disorders of Sex Development/genetics , Disorders of Sex Development/pathology , Europe , Female , Genetic Testing/trends , Guidelines as Topic , High-Throughput Nucleotide Sequencing , Humans , Pregnancy , Rare Diseases/epidemiology , Rare Diseases/genetics , Rare Diseases/pathology
15.
Retina ; 41(6): 1346-1355, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34001834

ABSTRACT

PURPOSE: To describe an isolated maculopathy and an intermediate rod-cone dystrophy phenotype as the milder end of the RDH12-related retinal dystrophy spectrum. METHODS: Seven patients (17-34 years of age) underwent an extensive ophthalmic workup including psychophysical and electrophysiological testing and multimodal imaging. RESULTS: Three patients have isolated macular disease. Best-corrected visual acuity (BCVA) ranges from 20/125 to 20/40 with normal visual fields or only limited central, relative scotomata, and normal full-field ERGs. Both optical coherence tomography scans and autofluorescent imaging hint at relatively better-preserved foveal quality initially. An intermediate rod-cone phenotype in four patients is characterized by a central retinal dystrophy extending just beyond the vascular arcades, characteristic peripapillary sparing, and additional scattered atrophic patches. Again, foveal quality is initially better on optical coherence tomography scans. Best-corrected visual acuity ranges from counting fingers to 20/32. Goldmann visual fields vary from central scotomata to severe generalized abnormalities. ERGs range between mild and severe rod-cone dysfunction. Nine distinct RDH12 pathogenic variants, two of which are novel, are identified. CONCLUSION: The classic phenotype of RDH12-related early-onset retinal dystrophy is expanded to include an isolated maculopathy and intermediate dystrophy phenotype, characterized by its later onset and milder course with a fair visual potential until much later in life, emphasizing the phenotypic heterogeneity of RDH12-related retinopathy.


Subject(s)
Alcohol Oxidoreductases/genetics , Cone-Rod Dystrophies/genetics , Macular Degeneration/etiology , Mutation , Photoreceptor Cells, Vertebrate/pathology , Visual Acuity , Visual Fields/physiology , Adolescent , Adult , Alcohol Oxidoreductases/metabolism , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/metabolism , DNA Mutational Analysis , Electroretinography/methods , Female , Humans , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Male , Pedigree , Phenotype , Tomography, Optical Coherence/methods , Young Adult
16.
Retina ; 41(1): 213-223, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32301896

ABSTRACT

PURPOSE: To investigate the natural history of RHO-associated retinitis pigmentosa (RP). METHODS: A multicenter, medical chart review of 100 patients with autosomal dominant RHO-associated RP. RESULTS: Based on visual fields, time-to-event analysis revealed median ages of 52 and 79 years to reach low vision (central visual field <20°) and blindness (central visual field <10°), respectively. For the best-corrected visual acuity (BCVA), the median age to reach mild impairment (20/67 ≤ BCVA < 20/40) was 72 years, whereas this could not be computed for lower acuities. Disease progression was significantly faster in patients with a generalized RP phenotype (n = 75; 75%) than that in patients with a sector RP phenotype (n = 25; 25%), in terms of decline rates of the BCVA (P < 0.001) and V4e retinal seeing areas (P < 0.005). The foveal thickness of the photoreceptor-retinal pigment epithelium (PR + RPE) complex correlated significantly with BCVA (Spearman's ρ = 0.733; P < 0.001). CONCLUSION: Based on central visual fields, the optimal window of intervention for RHO-associated RP is before the 5th decade of life. Significant differences in disease progression are present between generalized and sector RP phenotypes. Our findings suggest that the PR + RPE complex is a potential surrogate endpoint for the BCVA in future studies.


Subject(s)
Acute-Phase Proteins/genetics , Forecasting , Retinal Pigment Epithelium/pathology , Retinitis Pigmentosa/diagnosis , Visual Acuity , Visual Fields/physiology , Acute-Phase Proteins/metabolism , Aged , Electroretinography , Female , Follow-Up Studies , Humans , Male , Middle Aged , Phenotype , Retinitis Pigmentosa/blood , Retinitis Pigmentosa/genetics , Retrospective Studies , Tomography, Optical Coherence/methods
17.
Hum Mutat ; 41(5): 998-1011, 2020 05.
Article in English | MEDLINE | ID: mdl-31999394

ABSTRACT

Inactivating variants in the centrosomal CEP78 gene have been found in cone-rod dystrophy with hearing loss (CRDHL), a particular phenotype distinct from Usher syndrome. Here, we identified and functionally characterized the first CEP78 missense variant c.449T>C, p.(Leu150Ser) in three CRDHL families. The variant was found in a biallelic state in two Belgian families and in a compound heterozygous state-in trans with c.1462-1G>T-in a third German family. Haplotype reconstruction showed a founder effect. Homology modeling revealed a detrimental effect of p.(Leu150Ser) on protein stability, which was corroborated in patients' fibroblasts. Elongated primary cilia without clear ultrastructural abnormalities in sperm or nasal brushes suggest impaired cilia assembly. Two affected males from different families displayed sperm abnormalities causing infertility. One of these is a heterozygous carrier of a complex allele in SPAG17, a ciliary gene previously associated with autosomal recessive male infertility. Taken together, our data indicate that a missense founder allele in CEP78 underlies the same sensorineural CRDHL phenotype previously associated with inactivating variants. Interestingly, the CEP78 phenotype has been possibly expanded with male infertility. Finally, CEP78 loss-of-function variants may have an underestimated role in misdiagnosed Usher syndrome, with or without sperm abnormalities.


Subject(s)
Alleles , Cell Cycle Proteins/genetics , Cone-Rod Dystrophies/genetics , Founder Effect , Hearing Loss/genetics , Infertility, Male/genetics , Mutation, Missense , Adolescent , Cell Cycle Proteins/chemistry , Cilia/metabolism , Cilia/ultrastructure , Cone-Rod Dystrophies/diagnosis , DNA Mutational Analysis , Female , Fibroblasts/metabolism , Genotype , Hearing Loss/diagnosis , Humans , Infertility, Male/diagnosis , Male , Middle Aged , Models, Molecular , Pedigree , Phenotype , Protein Conformation , Structure-Activity Relationship , Syndrome , Exome Sequencing
18.
Br J Haematol ; 188(5): 768-773, 2020 03.
Article in English | MEDLINE | ID: mdl-31710708

ABSTRACT

GATA2 deficiency, first described in 2011, is a bone marrow failure disorder resulting in a complex haematological and immunodeficiency syndrome characterised by cytopenias, severe infections, myelodysplasia and leukaemia. The only curative treatment is allogeneic haematopoietic stem cell transplantation (HSCT). Although knowledge on this syndrome has greatly expanded, in clinical practice many challenges remain. In particular, guidelines on optimal donor and stem cell source and conditioning regimens regarding HSCT are lacking. Additionally, genetic analysis of GATA2 is technically cumbersome and could easily result in false-negative results. With this report, we wish to raise awareness of these pitfalls amongst physicians dealing with haematological malignancies and primary immunodeficiencies.


Subject(s)
GATA2 Deficiency/therapy , Hematopoietic Stem Cell Transplantation , Adult , Allografts , Female , GATA2 Deficiency/diagnostic imaging , Hematologic Neoplasms/diagnostic imaging , Hematologic Neoplasms/therapy , Humans , Immunologic Deficiency Syndromes/diagnostic imaging , Immunologic Deficiency Syndromes/therapy , Male
19.
Genet Med ; 22(7): 1235-1246, 2020 07.
Article in English | MEDLINE | ID: mdl-32307445

ABSTRACT

PURPOSE: Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. METHODS: Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. RESULTS: In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. CONCLUSION: Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.


Subject(s)
Macular Degeneration , Transcriptome , ATP-Binding Cassette Transporters/genetics , Genomics , Humans , Introns , Macular Degeneration/genetics , Mutation , Pedigree , Stargardt Disease
20.
Clin Genet ; 97(3): 426-436, 2020 03.
Article in English | MEDLINE | ID: mdl-31721179

ABSTRACT

Biallelic MFSD8 variants are an established cause of severe late-infantile subtype of neuronal ceroid lipofuscinosis (v-LINCL), a severe lysosomal storage disorder, but have also been associated with nonsyndromic adult-onset maculopathy. Here, we functionally characterized two novel MFSD8 variants found in a child with juvenile isolated maculopathy, in order to establish a refined prognosis. ABCA4 locus resequencing was followed by the analysis of other inherited retinal disease genes by whole exome sequencing (WES). Minigene assays and cDNA sequencing were used to assess the effect of a novel MFSD8 splice variant. MFSD8 expression was quantified with qPCR and overexpression studies were analyzed by immunoblotting. Transmission electron microscopy (TEM) was performed on a skin biopsy and ophthalmological and neurological re-examinations were conducted. WES revealed two novel MFSD8 variants: c.[590del];[439+3A>C] p.[Gly197Valfs*2];[Ile67Glufs*3]. Characterization of the c.439+3A>C variant via splice assays showed exon-skipping (p.Ile67Glufs*3), while overexpression studies of the corresponding protein indicated expression of a truncated polypeptide. In addition, a significantly reduced MFSD8 RNA expression was noted in patient's lymphocytes. TEM of a skin biopsy revealed typical v-LINCL lipopigment inclusions while neurological imaging of the proband displayed subtle cerebellar atrophy. Functional characterization demonstrated the pathogenicity of two novel MFSD8 variants, found in a child with an initial diagnosis of juvenile isolated maculopathy but likely evolving to v-LINCL with a protracted disease course. Our study allowed a refined neurological prognosis in the proband and expands the natural history of MFSD8-associated disease.


Subject(s)
Macular Degeneration/genetics , Membrane Transport Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Child , Female , Genetic Variation , Homozygote , Humans , Macular Degeneration/diagnostic imaging , Macular Degeneration/physiopathology , Microscopy, Electron, Transmission , Mutation , Neuronal Ceroid-Lipofuscinoses/physiopathology , Retina/diagnostic imaging , Retina/physiopathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL