Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Nano Lett ; 20(12): 8487-8492, 2020 12 09.
Article in English | MEDLINE | ID: mdl-32936645

ABSTRACT

Lanthanide-based upconversion nanoparticles (UCNPs) generally require high power laser excitation. Here, we report wide-field upconversion microscopy at single-nanoparticle sensitivity using incoherent excitation of a 970 nm light-emitting diode (LED). We show that due to its broad emission spectrum, LED excitation is about 3 times less effective for UCNPs and generates high background compared to laser illumination. To counter this, we use time-gated luminescence detection to eliminate the residual background from the LED source, so that individual UCNPs with high sensitizer (Yb3+) doping and inert shell protection become clearly identified under LED excitation at 1.18 W cm-2, as confirmed by correlated electron microscopy images. Hydrophilic UCNPs are obtained by polysaccharide coating via a facile ligand exchange protocol to demonstrate imaging of cellular uptake using LED excitation. These results suggest a viable approach to bypassing the limitations associated with high-power lasers when applying UCNPs and upconversion microscopy to life science research.

2.
Opt Express ; 28(16): 24308-24326, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752412

ABSTRACT

Upconversion nanoparticles (UCNPs) are becoming increasingly popular as biological markers as they offer photo-stable imaging in the near-infrared (NIR) biological transparency window. Imaging at NIR wavelengths benefits from low auto-fluorescence background and minimal photo-damage. However, as the diffraction limit increases with the wavelength, the imaging resolution deteriorates. To address this limitation, recently two independent approaches have been proposed for imaging UCNPs with sub-diffraction resolution, namely stimulated emission-depletion (STED) microscopy and super linear excitation-emission (uSEE) microscopy. Both methods are very sensitive to the UCNP composition and the imaging conditions, i.e. to the excitation and depletion power. Here, we demonstrate that the imaging conditions can be chosen in a way that activates both super-resolution regimes simultaneously when imaging NaYF4:Yb,Tm UCNPs. The combined uSEE-STED mode benefits from the advantages of both techniques, allowing for imaging with lateral resolution about six times better than the diffraction limit due to STED and simultaneous improvement of the axial resolution about twice over the diffraction limit due to uSEE. Conveniently, at certain imaging conditions, the uSEE-STED modality can achieve better resolution at four times lower laser power compared to STED mode, making the method appealing for biological applications. We illustrate this by imaging UCNPs functionalized by colominic acid in fixed neuronal phenotype cells.

3.
J Chem Phys ; 149(3): 034301, 2018 Jul 21.
Article in English | MEDLINE | ID: mdl-30037254

ABSTRACT

Wavelength-dependent measurements of the RNA base uracil, undertaken with nanosecond ultraviolet laser pulses, have previously identified a fragment at m/z = 84 (corresponding to the C3H4N2O+ ion) at excitation wavelengths ≤232 nm. This has been interpreted as a possible signature of a theoretically predicted ultrafast ring-opening occurring on a neutral excited state potential energy surface. To further investigate the dynamics of this mechanism, and also the non-adiabatic dynamics operating more generally in uracil, we have used a newly built ultra-high vacuum spectrometer incorporating a laser-based thermal desorption source to perform time-resolved ion-yield measurements at pump wavelengths of 267 nm, 220 nm, and 200 nm. We also report complementary data obtained for the related species 2-thiouracil following 267 nm excitation. Where direct comparisons can be made (267 nm), our findings are in good agreement with the previously reported measurements conducted on these systems using cold molecular beams, demonstrating that the role of initial internal energy on the excited state dynamics is negligible. Our 220 nm and 200 nm data also represent the first reported ultrafast study of uracil at pump wavelengths <250 nm, revealing extremely rapid (<200 fs) relaxation of the bright S3(1ππ*) state. These measurements do not, however, provide any evidence for the appearance of the m/z = 84 fragment within the first few hundred picoseconds following excitation. This key finding indicates that the detection of this specific species in previous nanosecond work is not directly related to an ultrafast ring-opening process. An alternative excited state process, operating on a more extended time scale, remains an open possibility.

4.
Analyst ; 140(12): 4270-6, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25929227

ABSTRACT

Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.

5.
Phys Chem Chem Phys ; 17(11): 7172-80, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25691342

ABSTRACT

The four DNA nucleosides guanosine, adenosine, cytidine and thymidine have been produced in the gas phase by a laser thermal desorption source, and irradiated by a beam of protons with 5 keV kinetic energy. The molecular ions as well as energetic neutrals formed have been analyzed by mass spectrometry in order to shed light on the ionization and fragmentation processes triggered by proton collision. A range of 8-20 eV has been estimated for the binding energy of the electron captured by the proton. Glycosidic bond cleavage between the base and sugar has been observed with a high probability for all nucleosides, resulting in predominantly intact base ions for guanosine, adenosine, and cytidine but not for thymidine where intact sugar ions are dominant. This behavior is influenced by the ionization energies of the nucleobases (G < A < C < T), which seems to determine the localization of the charge following the initial ionization. This charge transfer process can also be inferred from the production of protonated base ions, which have a similar dependence on the base ionization potential, although the base proton affinity might also play a role. Other dissociation pathways have also been identified, including further fragmentation of the base and sugar moieties for thymidine and guanosine, respectively, and partial breakup of the sugar ring without glycosidic bond cleavage mainly for adenosine and cytidine. These results show that charge localization following ionization by proton irradiation is important in determining dissociation channels of isolated nucleosides, which could in turn influence direct radiation damage in DNA.


Subject(s)
DNA/chemistry , Gases/chemistry , Nucleosides/chemistry , Protons
6.
Phys Chem Chem Phys ; 17(36): 23643-50, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26299204

ABSTRACT

The ultrafast photo-physical properties of DNA are crucial in providing a stable basis for life. Although the DNA bases efficiently absorb ultraviolet (UV) radiation, this energy can be dissipated to the surrounding environment by the rapid conversion of electronic energy to vibrational energy within about a picosecond. The intrinsic nature of this internal conversion process has previously been demonstrated through gas phase experiments on the bases, supported by theoretical calculations. De-excitation rates appear to be accelerated when individual bases are hydrogen bonded to solvent molecules or their complementary Watson-Crick pair. In this paper, the first gas-phase measurements of electronic relaxation in DNA nucleosides following UV excitation are reported. Using a pump-probe ionization scheme, the lifetimes for internal conversion to the ground state following excitation at 267 nm are found to be reduced by around a factor of two for adenosine, cytidine and thymidine compared with the isolated bases. These results are discussed in terms of a recent proposition that a charge transfer state provides an additional internal conversion pathway mediated by proton transfer through a sugar to base hydrogen bond.


Subject(s)
DNA/chemistry , Nucleosides/radiation effects , Lasers , Nucleosides/chemistry , Ultraviolet Rays , Volatilization
7.
Nanoscale ; 12(39): 20347-20355, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33006350

ABSTRACT

Upconversion nanoparticles (UCNPs) exhibit unique optical properties such as photo-emission stability, large anti-Stokes shift, and long excited-state lifetimes, allowing significant advances in a broad range of applications from biomedical sensing to super-resolution microscopy. In recent years, progress on nanoparticle synthesis led to the development of many strategies for enhancing their upconversion luminescence, focused in particular on heavy doping of lanthanide ions and core-shell structures. In this article, we investigate the non-linear emission properties of fully Yb-based core-shell UCNPs and their impact on the super-resolution performance of stimulated excitation-depletion (STED) microscopy and super-linear excitation-emission (uSEE) microscopy. Controlling the power-dependent emission curve enables us to relax constraints on the doping concentrations and to reduce the excitation power required for accessing sub-diffraction regimes. We take advantage of this feature to implement multiplexed super-resolution imaging of a two-sample mixture.

8.
J Phys Chem Lett ; 9(16): 4570-4577, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30044916

ABSTRACT

Attosecond pump-probe experiments performed in small molecules have allowed tracking charge dynamics in the natural time scale of electron motion. That this is also possible in biologically relevant molecules is still a matter of debate, because the large number of available nuclear degrees of freedom might destroy the coherent charge dynamics induced by the attosecond pulse. Here we investigate extreme ultraviolet-induced charge dynamics in the amino acid tryptophan. We find that, although nuclear motion and nonadiabatic effects introduce some decoherence in the moving electron wave packet, these do not significantly modify the coherence induced by the attosecond pulse during the early stages of the dynamics, at least for molecules in their equilibrium geometry. Our conclusions are based on elaborate theoretical calculations and the experimental observation of sub-4 fs dynamics, which can only be reasonably assigned to electronic motion. Hence, attosecond pump-probe spectroscopy appears as a promising approach to induce and image charge dynamics in complex molecules.

SELECTION OF CITATIONS
SEARCH DETAIL