Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cell Immunol ; 332: 129-133, 2018 10.
Article in English | MEDLINE | ID: mdl-30093071

ABSTRACT

GARP is a transmembrane protein that presents latent TGF-ß1 on the surface of regulatory T cells (Tregs). Neutralizing anti-GARP monoclonal antibodies that prevent the release of active TGF-ß1, inhibit the immunosuppressive activity of human Tregs in vivo. In this study, we investigated the contribution of GARP on mouse Tregs to immunosuppression in experimental tumors. Unexpectedly, Foxp3 conditional garp knockout (KO) mice challenged orthotopically with GL261 tumor cells or subcutaneously with MC38 colon carcinoma cells did not show prolonged survival or delayed tumor growth. Also, the suppressive function of KO Tregs was similar to that of wild type Tregs in the T cell transfer model in allogeneic, immunodeficient mice. In conclusion, garp deletion in mouse Tregs is not sufficient to impair their immunosuppressive activity in vivo.


Subject(s)
Membrane Proteins/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Line, Tumor , Forkhead Transcription Factors/immunology , Immunosuppressive Agents/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , Sequence Deletion/immunology , Transforming Growth Factor beta1/immunology
2.
Xenotransplantation ; 23(3): 222-236, 2016 05.
Article in English | MEDLINE | ID: mdl-27188532

ABSTRACT

BACKGROUND: Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. METHODS: GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1-desamino-8-d-arginine vasopressin (DDAVP), 3 µg/kg (to pre-deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). RESULTS: Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung "survival" was significantly longer (>240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and ßTG) were significantly inhibited, when pigs were pre-treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. CONCLUSIONS: The GPIb-VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung.


Subject(s)
Blood Platelets/cytology , Lung/metabolism , Platelet Aggregation/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , von Willebrand Factor/metabolism , Animals , Animals, Genetically Modified , Graft Survival/immunology , Heterografts/immunology , Humans , Lung/immunology , Lung Transplantation/methods , Platelet Activation/physiology , Platelet Aggregation/immunology , Platelet Glycoprotein GPIb-IX Complex/genetics , Swine , Thrombocytopenia/etiology , Transplantation, Heterologous/methods , von Willebrand Factor/genetics
3.
Int J Stroke ; 15(5): 467-476, 2020 07.
Article in English | MEDLINE | ID: mdl-31679478

ABSTRACT

The recent advent of endovascular procedures has created the unique opportunity to collect and analyze thrombi removed from cerebral arteries, instigating a novel subfield in stroke research. Insights into thrombus characteristics and composition could play an important role in ongoing efforts to improve acute ischemic stroke therapy. An increasing number of centers are collecting stroke thrombi. This paper aims at providing guiding information on thrombus handling, procedures, and analysis in order to facilitate and standardize this emerging research field.


Subject(s)
Brain Ischemia , Endovascular Procedures , Stroke , Thrombosis , Brain Ischemia/complications , Brain Ischemia/surgery , Humans , Stroke/surgery , Thrombectomy
4.
J Thromb Haemost ; 16(11): 2289-2299, 2018 11.
Article in English | MEDLINE | ID: mdl-30152919

ABSTRACT

Essentials ADAMTS13 requires a substrate-induced conformational change to attain full activity in vitro. The efficacy of wild type ADAMTS13 in models of thrombosis/stroke may be enhanced by pre-activation. A pre-activated ADAMTS13 variant exhibits enhanced proteolysis of platelet agglutinates. This ADAMTS13 variant is protective in a murine model of stroke at a lower dose than WT ADAMTS13. SUMMARY: Background ADAMTS-13 circulates in a closed conformation, only achieving full proteolytic activity against von Willebrand factor (VWF) following a substrate-induced conformational change. A gain-of-function (GoF) ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F) is conformationally preactivated. Objectives To establish how the hyperactivity of GoF ADAMTS-13 is manifested in experimental models mimicking the occlusive arterial thrombi present in acute ischemic stroke. Methods The ability of GoF ADAMTS-13 to dissolve VWF-platelet agglutinates was examined with an assay of ristocetin-induced platelet agglutination and in parallel-flow models of arterial thrombosis. A murine model of focal ischemia was used to assess the thrombolytic potential of GoF ADAMTS-13. Results Wild-type (WT) ADAMTS-13 required conformational activation to attain full activity against VWF-mediated platelet capture under flow. In this assay, GoF ADAMTS-13 had an EC50 value more than five-fold lower than that of WT ADAMTS-13 (0.73 ± 0.21 nm and 3.81 ± 0.97 nm, respectively). The proteolytic activity of GoF ADAMTS-13 against preformed platelet agglutinates under flow was enhanced more than four-fold as compared with WT ADAMTS-13 (EC50 values of 2.5 ± 1.1 nm and 10.2 ± 5.6 nm, respectively). In a murine stroke model, GoF ADAMTS-13 restored cerebral blood flow at a lower dose than WT ADAMTS-13, and partially retained the ability to recanalize vessels when administration was delayed by 1 h. Conclusions The limited proteolytic activity of WT ADAMTS-13 in in vitro models of arterial thrombosis suggests an in vivo requirement for conformational activation. The enhanced activity of the GoF ADAMTS-13 variant translates to a more pronounced protective effect in experimental stroke.


Subject(s)
ADAMTS13 Protein/genetics , Brain Ischemia/metabolism , Platelet Aggregation , Stroke/metabolism , ADAMTS13 Protein/metabolism , Animals , Arteries/metabolism , Blood Platelets/metabolism , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Humans , Mice , Protein Conformation , Proteolysis , Recombinant Proteins , Ristocetin , Thrombosis/metabolism
5.
J Thromb Haemost ; 16(3): 592-604, 2018 03.
Article in English | MEDLINE | ID: mdl-29288565

ABSTRACT

Essentials von Willebrand disease (VWD) is the most common inherited bleeding disorder. Gene therapy for VWD offers long-term therapy for VWD patients. Transposons efficiently integrate the large von Willebrand factor (VWF) cDNA in mice. Liver-directed transposons support sustained VWF expression with suboptimal multimerization. SUMMARY: Background Type 3 von Willebrand disease (VWD) is characterized by complete absence of von Willebrand factor (VWF). Current therapy is limited to treatment with exogenous VWF/FVIII products, which only provide a short-term solution. Gene therapy offers the potential for a long-term treatment for VWD. Objectives To develop an integrative Sleeping Beauty (SB) transposon-mediated VWF gene transfer approach in a preclinical mouse model of severe VWD. Methods We established a robust platform for sustained transgene murine VWF (mVWF) expression in the liver of Vwf-/- mice by combining a liver-specific promoter with a sandwich transposon design and the SB100X transposase via hydrodynamic gene delivery. Results The sandwich SB transposon was suitable to deliver the full-length mVWF cDNA (8.4 kb) and supported supra-physiological expression that remained stable for up to 1.5 years after gene transfer. The sandwich vector stayed episomal (~60 weeks) or integrated in the host genome, respectively, in the absence or presence of the transposase. Transgene integration was confirmed using carbon tetrachloride-induced liver regeneration. Analysis of integration sites by high-throughput analysis revealed random integration of the sandwich vector. Although the SB vector supported long-term expression of supra-physiological VWF levels, the bleeding phenotype was not corrected in all mice. Long-term expression of VWF by hepatocytes resulted in relatively reduced amounts of high-molecular-weight multimers, potentially limiting its hemostatic efficacy. Conclusions Although this integrative platform for VWF gene transfer is an important milestone of VWD gene therapy, cell type-specific targeting is yet to be achieved.


Subject(s)
DNA Transposable Elements , Genetic Therapy/methods , Transposases/genetics , von Willebrand Diseases/blood , von Willebrand Factor/analysis , Animals , DNA, Complementary/metabolism , Disease Models, Animal , Gene Expression Regulation , Gene Transfer Techniques , Humans , Hydrodynamics , Liver/metabolism , Liver Regeneration , Mice , Mice, Inbred C57BL , Phenotype , Promoter Regions, Genetic , Transgenes , von Willebrand Diseases/metabolism
6.
J Thromb Haemost ; 16(2): 378-388, 2018 02.
Article in English | MEDLINE | ID: mdl-29222940

ABSTRACT

Essentials Conformational changes in ADAMTS-13 are part of its mode-of-action. The murine anti-ADAMTS-13 antibody 1C4 discriminates between folded and open ADAMTS-13. ADAMTS-13 conformation is open in acute acquired thrombotic thrombocytopenic purpura (TTP). Our study forms an important basis to fully elucidate the pathophysiology of TTP. SUMMARY: Background Acquired thrombotic thrombocytopenic purpura (aTTP) is an autoimmune disorder characterized by absent ADAMTS-13 activity and the presence of anti-ADAMTS-13 autoantibodies. Recently, it was shown that ADAMTS-13 adopts a folded or an open conformation. Objectives As conformational changes in self-antigens play a role in the pathophysiology of different autoimmune diseases, we hypothesized that the conformation of ADAMTS-13 changes during acute aTTP. Methods Antibodies recognizing cryptic epitopes in the spacer domain were generated. Next, the conformation of ADAMTS-13 in 40 healthy donors (HDs), 99 aTTP patients (63 in the acute phase versus 36 in remission), 12 hemolytic-uremic syndrome (HUS) patients and 63 sepsis patients was determined with ELISA. Results The antibody 1C4 recognizes a cryptic epitope in ADAMTS-13. Therefore, we were able to discriminate between a folded and an open ADAMTS-13 conformation. We showed that ADAMTS-13 in HDs does not bind to 1C4, indicating that ADAMTS-13 circulates in a folded conformation. Similar results were obtained for HUS and sepsis patients. In contrast, ADAMTS-13 of acute aTTP patients bound to 1C4 in 92% of the cases, whereas, in most cases, this binding was abolished during remission, showing that the conformation of ADAMTS-13 is open during an acute aTTP episode. Conclusions Our study shows that, besides absent ADAMTS-13 activity and the presence of anti-ADAMTS-13 autoantibodies, an open ADAMTS-13 conformation is also a hallmark of acute aTTP. Demonstrating this altered ADAMTS-13 conformation in acute aTTP will help to further unravel the pathophysiology of aTTP and lead to improved therapy and diagnosis.


Subject(s)
ADAMTS13 Protein/chemistry , Purpura, Thrombotic Thrombocytopenic/enzymology , ADAMTS13 Protein/blood , ADAMTS13 Protein/immunology , Autoantibodies/immunology , Autoantibodies/metabolism , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes , Humans , Protein Binding , Protein Conformation , Protein Folding , Purpura, Thrombotic Thrombocytopenic/blood , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/immunology , Structure-Activity Relationship
7.
J Thromb Haemost ; 15(12): 2432-2442, 2017 12.
Article in English | MEDLINE | ID: mdl-28981198

ABSTRACT

Essentials Plasmin is able to proteolyse von Willebrand factor. It was unclear if plasmin influences acute thrombotic thrombocytopenic purpura (TTP). Plasmin levels are increased during acute TTP though suppressed via plasmin(ogen) inhibitors. Allowing amplified endogenous plasmin activity in mice results in resolution of TTP signs. SUMMARY: Background Thrombotic thrombocytopenic purpura (TTP) is an acute life-threatening pathology, caused by occlusive von Willebrand factor (VWF)-rich microthrombi that accumulate in the absence of ADAMTS-13. We previously demonstrated that plasmin can cleave VWF and that plasmin is generated in patients during acute TTP. However, the exact role of plasmin in TTP remains unclear. Objectives Investigate if endogenous plasmin-mediated proteolysis of VWF can influence acute TTP episodes. Results In mice with an acquired ADAMTS-13 deficiency, plasmin is generated during TTP as reflected by increased plasmin-α2-antiplasmin (PAP)-complex levels. However, mice still developed TTP, suggesting that this increase is not sufficient to control the pathology. As mice with TTP also had increased plasminogen activator inhibitor 1 (PAI-1) levels, we investigated whether blocking the plasmin(ogen) inhibitors would result in the generation of sufficient plasmin to influence TTP outcome in mice. Interestingly, when amplified plasmin activity was allowed (α2-antiplasmin-/- mice with inhibited PAI-1) in mice with an acquired ADAMTS-13 deficiency, a resolution of TTP signs was observed as a result of an increased proteolysis of VWF. In line with this, in patients with acute TTP, increased PAP-complex and PAI-1 levels were also observed. However, neither PAP-complex levels nor PAI-1 levels were related to TTP signs and outcome. Conclusions In conclusion, endogenous plasmin levels are increased during acute TTP, although limited via suppression through α2-antiplasmin and PAI-1. Only when amplified plasmin activity is allowed, plasmin can function as a back-up for ADAMTS-13 in mice and resolve TTP signs as a result of an increased proteolysis of VWF.


Subject(s)
Fibrinolysin/metabolism , Purpura, Thrombotic Thrombocytopenic/blood , Purpura, Thrombotic Thrombocytopenic/therapy , ADAMTS13 Protein/deficiency , ADAMTS13 Protein/immunology , Adult , Animals , Autoantibodies/blood , Disease Models, Animal , Female , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Plasminogen Activator Inhibitor 1/blood , Purpura, Thrombotic Thrombocytopenic/immunology , alpha-2-Antiplasmin/metabolism , von Willebrand Factor/metabolism
8.
J Thromb Haemost ; 13(11): 2063-75, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26391536

ABSTRACT

BACKGROUND: Recently, conformational activation of ADAMTS-13 was identified. This mechanism showed the evolution from a condensed conformation, in which the proximal MDTCS and distal T2-CUB2 domains are in close contact with each other, to an activated, open structure due to binding with von Willebrand factor (VWF). OBJECTIVES: Identification of cryptic epitope/exosite exposure after conformational activation and of sites of flexibility in ADAMTS-13. METHODS: The activating effect of 25 anti-T2-CUB2 antibodies was studied in the FRETS-VWF73 and the vortex assay. Cryptic epitope/exosite exposure was determined with ELISA and VWF binding assay. The molecular basis for flexibility was hypothesized through rapid automatic detection and alignment of repeats (RADAR) analysis, tested with ELISA using deletion variants and visualized using electron microscopy. RESULTS: Eleven activating anti-ADAMTS-13 antibodies, directed against the T5-CUB2 domains, were identified in the FRETS-VWF73 assay. RADAR analysis identified three linker regions in the distal domains. Interestingly, identification of an antibody recognizing a cryptic epitope in the metalloprotease domain confirmed the contribution of these linker regions to conformational activation of the enzyme. The proof of flexibility around both the T2 and metalloprotease domains, as shown by by electron microscopy, further supported this contribution. In addition, cryptic epitope exposure was identified in the distal domains, because activating anti-T2-CUB2 antibodies increased the binding to folded VWF up to ~3-fold. CONCLUSION: Conformational activation of ADAMTS-13 leads to cryptic epitope/exosite exposure in both proximal and distal domains, subsequently inducing increased activity. Furthermore, three linker regions in the distal domains are responsible for flexibility and enable the interaction between the proximal and the T8-CUB2 domains.


Subject(s)
ADAM Proteins/chemistry , ADAM Proteins/immunology , ADAM Proteins/metabolism , ADAM Proteins/ultrastructure , ADAMTS13 Protein , Allosteric Regulation , Allosteric Site , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antigen-Antibody Reactions , Catalysis , Consensus Sequence , Enzyme Activation , Epitopes/chemistry , Epitopes/immunology , Humans , Microscopy, Electron , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Folding , Protein Processing, Post-Translational , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid , Thrombospondin 1/chemistry , von Willebrand Factor/metabolism
9.
J Thromb Haemost ; 13(2): 283-92, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25442981

ABSTRACT

BACKGROUND: Congenital thrombotic thrombocytopenic purpura (TTP) is characterized by mutations in the ADAMTS13 gene, which either impair protein secretion or influence ADAMTS13 (A Disintegrin-like And Metalloprotease domain with ThromboSpondin type-1 motif, member 13) activity. Phenotypic consequences of these mutations have not yet been evaluated in animal models for TTP. OBJECTIVES: To identify the in vitro effect of a novel ADAMTS13 mutation and to investigate whether this mutation induces TTP in vivo. METHODS: All 29 ADAMTS13 exons with exon-intron boundaries of a patient with pregnancy-onset TTP were sequenced. Wild-type and mutant ADAMTS13 proteins were both transiently and stably expressed in human embryonic kidney cells, and their activity was evaluated in vitro using fluorescence resonance energy transfer and flow assays. Molecular dynamics simulations were performed to study Ca(2+) stability. Adamts13(-/-) mice were hydrodynamically injected with wild-type and mutant expression plasmids and triggered with recombinant human von Willebrand factor. RESULTS: We identified a novel heterozygous c.559G>C mutation in exon 6 of the proposita's ADAMTS13 gene. This mutation resulted in a p.Asp187His substitution (p.D187H), which was located in the high affinity Ca(2+) -binding site in the metalloprotease domain of ADAMTS13. The homozygous p.D187H mutation down-regulated ADAMTS13 activity in vitro. Impaired proteolytic activity was linked to unstable Ca(2+) binding as visualized using a molecular dynamics simulation. In addition, the p.D187H mutation affects protein secretion in vitro. In Adamts13(-/-) mice, the homozygous p.D187H mutation reduced ADAMTS13 secretion and activity and contributed to TTP when these mice were triggered with recombinant human von Willebrand factor. CONCLUSIONS: Our data indicate that the p.D187H mutation impairs ADAMTS13 activity and secretion and is responsible for TTP onset in mice.


Subject(s)
ADAM Proteins/genetics , Blood Platelets/enzymology , Metalloendopeptidases/genetics , Mutation, Missense , Purpura, Thrombotic Thrombocytopenic/genetics , ADAM Proteins/blood , ADAM Proteins/deficiency , ADAMTS13 Protein , Adult , Animals , Binding Sites , Calcium/blood , DNA Mutational Analysis , Disease Models, Animal , Female , Genetic Predisposition to Disease , HEK293 Cells , Homozygote , Humans , Metalloendopeptidases/deficiency , Mice, Knockout , Molecular Dynamics Simulation , Phenotype , Pregnancy , Protein Binding , Purpura, Thrombotic Thrombocytopenic/blood , Purpura, Thrombotic Thrombocytopenic/enzymology , Transfection
10.
J Thromb Haemost ; 11 Suppl 1: 2-10, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23809106

ABSTRACT

Thrombotic thrombocytopenic purpura (TTP) is a puzzling disorder in many ways. The disease is difficult to diagnose as analogous symptoms are also found in other microangiopathic disorders. Although ADAMTS13 deficiency is generally required to develop TTP, only some patients with severe ADAMTS13 deficiency do spontaneously develop this disease. It is therefore assumed that environmental and/or genetic factors are needed to cause acute TTP. Nevertheless, acute TTP-like symptoms have also been observed in patients with moderate or normal levels of ADAMTS13. The development of animal models for TTP has allowed a closer look at the specific need for ADAMTS13 deficiency and the necessity for additional triggers in the pathophysiology of TTP. Mouse models for congenital TTP and a baboon model for acquired TTP have been generated. These animal models have also proven to be extremely valuable in developing new treatment strategies for TTP. In the current review, we discuss current animal models for TTP, what we have learned from them and how they were used to test new treatment strategies.


Subject(s)
Disease Models, Animal , Purpura, Thrombotic Thrombocytopenic/physiopathology , Animals , Mice , Mice, Inbred C57BL , Papio , Purpura, Thrombotic Thrombocytopenic/therapy
11.
J Thromb Haemost ; 10(1): 136-44, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22044575

ABSTRACT

BACKGROUND: Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be prothrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). OBJECTIVE: To explore the source and role of extracellular chromatin in DVT. METHODS: We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). RESULTS: We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared with sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs' structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. CONCLUSIONS: Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development.


Subject(s)
Neutrophils/metabolism , Venous Thrombosis/etiology , Animals , Chromatin , DNA , Histones , Mice , Vena Cava, Inferior/pathology , Venous Thrombosis/pathology , von Willebrand Factor
12.
J Thromb Haemost ; 8(10): 2305-12, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20695979

ABSTRACT

BACKGROUND: The multidomain metalloprotease ADAMTS13 regulates the size of von Willebrand factor (VWF) multimers upon their release from endothelial cells. How the different domains in ADAMTS13 control VWF proteolysis in vivo remains largely unidentified. METHODS: Seven C-terminally truncated murine ADAMTS13 (mADAMTS13) mutants were constructed and characterized in vitro. Their ability to cleave VWF strings in vivo was studied in the ADAMTS13(-/-) mouse. RESULTS: Murine MDTCS (devoid of T2-8 and CUB domains) retained full enzyme activity in vitro towards FRETS-VWF73 and the C-terminal T6-8 (del(T6-CUB)) and CUB domains (delCUB) are dispensable under these assay conditions. In addition, mADAMTS13 fragments without the spacer domain (MDT and M) had reduced catalytic efficiencies. Our results hence indicate that similar domains in murine and human ADAMTS13 are required for activity in vitro, supporting the use of mouse models to study ADAMTS13 function in vivo. Interestingly, using intravital microscopy we show that removal of the CUB domains abolishes proteolysis of platelet-decorated VWF strings in vivo. In addition, whereas MDTCS is fully active in vivo, partial (del(T6-CUB)) or complete (delCUB) addition of the T2-8 domains gradually attenuates its activity. CONCLUSIONS: Our data demonstrate that the ADAMTS13 CUB and T2-8 domains influence proteolysis of platelet-decorated VWF strings in vivo.


Subject(s)
Blood Platelets/cytology , Metalloendopeptidases/chemistry , Metalloendopeptidases/physiology , von Willebrand Factor/metabolism , ADAMTS13 Protein , Animals , Binding Sites , Blotting, Western , Cell Line , Humans , Mice , Mice, Transgenic , Mutation , Protein Binding , Protein Structure, Tertiary
13.
J Thromb Haemost ; 6(9): 1534-41, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18662260

ABSTRACT

BACKGROUND: Over the last 4 years ADAMTS-13 measurement underwent dramatic progress with newer and simpler methods. AIMS: Blind evaluation of newer methods for their performance characteristics. DESIGN: The literature was searched for new methods and the authors invited to join the evaluation. Participants were provided with a set of 60 coded frozen plasmas that were prepared centrally by dilutions of one ADAMTS-13-deficient plasma (arbitrarily set at 0%) into one normal-pooled plasma (set at 100%). There were six different test plasmas ranging from 100% to 0%. Each plasma was tested 'blind' 10 times by each method and results expressed as percentage vs. the local and the common standard provided by the organizer. RESULTS: There were eight functional and three antigen assays. Linearity of observed-vs.-expected ADAMTS-13 levels assessed as r2 ranged from 0.931 to 0.998. Between-run reproducibility expressed as the (mean) CV for repeated measurements was below 10% for three methods, 10-15% for five methods and up to 20% for the remaining three. F-values (analysis of variance) calculated to assess the capacity to distinguish between ADAMTS-13 levels (the higher the F-value, the better the capacity) ranged from 3965 to 137. Between-method variability (CV) amounted to 24.8% when calculated vs. the local and to 20.5% when calculated vs. the common standard. Comparative analysis showed that functional assays employing modified von Willebrand factor peptides as substrate for ADAMTS-13 offer the best performance characteristics. CONCLUSIONS: New assays for ADAMTS-13 have the potential to make the investigation/management of patients with thrombotic microangiopathies much easier than in the past.


Subject(s)
ADAM Proteins/blood , Cooperative Behavior , von Willebrand Factor/metabolism , ADAMTS13 Protein , Humans , Hydrolysis , Reference Standards , Reproducibility of Results
15.
Cardiovasc Hematol Disord Drug Targets ; 6(3): 191-207, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17017902

ABSTRACT

Cardiovascular disease is the major cause of mortality in Western countries. Platelets play a crucial role in the development of arterial thrombosis and other pathophysiologies leading to clinical ischemic events. In the damaged vessel wall, platelets adhere to the subendothelium through an interaction with von Willebrand factor (VWF), which forms a bridge between subendothelial collagen and the platelet receptor glycoprotein (GP) Ib/IX/V. This reversible adhesion allows platelets to roll over the damaged area, decreasing their velocity and resulting in strong platelet activation. This leads to the conformational activation of the platelet GPIIb/IIIa receptor, fibrinogen binding and finally to platelet aggregation. As each interaction (collagen-VWF, VWF-GPIb and GPIIb/IIIa-fibrinogen) plays an essential role in primary haemostasis, loss of either of these interactions results in a bleeding diathesis, implying that interfering with these interactions might result in an anti-thrombotic effect. Whereas GPIIb/IIIa antagonists indeed are effective anti-thrombotics, it has been suggested that drugs which block the initial steps of thrombus formation (collagen-VWF or VWF-GPIb interaction) might have advantages over the ones that merely inhibit platelet aggregation. In this review we will discuss and compare the development of monoclonal antibodies (moAbs) that inhibit platelet adhesion or platelet aggregation. The effect of the moAbs in in vitro experiments, in in vivo models and in clinical trials will be described. Benefits, limitations, current applications and the future perspectives in the development of antibodies for each target will be discussed.


Subject(s)
Antibodies, Monoclonal/pharmacology , Fibrinolytic Agents/pharmacology , Platelet Adhesiveness/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Animals , Humans , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Platelet Glycoprotein GPIb-IX Complex/antagonists & inhibitors , von Willebrand Factor/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL