Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nucleic Acids Res ; 52(D1): D900-D908, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37933854

ABSTRACT

Ageing is a complex and multifactorial process. For two decades, the Human Ageing Genomic Resources (HAGR) have aided researchers in the study of various aspects of ageing and its manipulation. Here, we present the key features and recent enhancements of these resources, focusing on its six main databases. One database, GenAge, focuses on genes related to ageing, featuring 307 genes linked to human ageing and 2205 genes associated with longevity and ageing in model organisms. AnAge focuses on ageing, longevity, and life-history across animal species, containing data on 4645 species. DrugAge includes information about 1097 longevity drugs and compounds in model organisms such as mice, rats, flies, worms and yeast. GenDR provides a list of 214 genes associated with the life-extending benefits of dietary restriction in model organisms. CellAge contains a catalogue of 866 genes associated with cellular senescence. The LongevityMap serves as a repository for genetic variants associated with human longevity, encompassing 3144 variants pertaining to 884 genes. Additionally, HAGR provides various tools as well as gene expression signatures of ageing, dietary restriction, and replicative senescence based on meta-analyses. Our databases are integrated, regularly updated, and manually curated by experts. HAGR is freely available online (https://genomics.senescence.info/).


Subject(s)
Aging , Databases, Genetic , Genomics , Animals , Humans , Aging/genetics , Cellular Senescence , Longevity/genetics
2.
J Biol Chem ; 295(12): 3773-3782, 2020 03 20.
Article in English | MEDLINE | ID: mdl-31996377

ABSTRACT

In the presence of galactose, lithium ions activate the unfolded protein response (UPR) by inhibiting phosphoglucomutase activity and causing the accumulation of galactose-related metabolites, including galactose-1-phosphate. These metabolites also accumulate in humans who have the disease classic galactosemia. Here, we demonstrate that Saccharomyces cerevisiae yeast strains harboring a deletion of UBX4, a gene encoding a partner of Cdc48p in the endoplasmic reticulum-associated degradation (ERAD) pathway, exhibit delayed UPR activation after lithium and galactose exposure because the deletion decreases galactose-1-phosphate levels. The delay in UPR activation did not occur in yeast strains in which key ERAD or proteasomal pathway genes had been disrupted, indicating that the ubx4Δ phenotype is ERAD-independent. We also observed that the ubx4Δ strain displays decreased oxygen consumption. The inhibition of mitochondrial respiration was sufficient to diminish galactose-1-phosphate levels and, consequently, affects UPR activation. Finally, we show that the deletion of the AMP-activated protein kinase ortholog-encoding gene SNF1 can restore the oxygen consumption rate in ubx4Δ strain, thereby reestablishing galactose metabolism, UPR activation, and cellular adaption to lithium-galactose challenge. Our results indicate a role for Ubx4p in yeast mitochondrial function and highlight that mitochondrial and endoplasmic reticulum functions are intertwined through galactose metabolism. These findings also shed new light on the mechanisms of lithium action and on the pathophysiology of galactosemia.


Subject(s)
Galactose/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Lithium/pharmacology , Mitochondria/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Unfolded Protein Response/drug effects , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Endoplasmic Reticulum/metabolism , Galactose/metabolism , Galactosephosphates/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Oxygen Consumption , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , RNA Splicing , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
3.
Nucleic Acids Res ; 47(8): 3957-3969, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30838421

ABSTRACT

RNA interference (RNAi) is a valuable technique to determine gene function. In Caenorhabditis elegans, RNAi can be achieved by feeding worms bacteria carrying a plasmid expressing double-stranded RNA (dsRNA) targeting a gene of interest. The most commonly used plasmid vector for this purpose is L4440. However, it has been noticed that sequences within L4440 may elicit unspecific effects. Here, we provide a comprehensive characterization of these effects and their mechanisms and describe new unexpected phenotypes uncovered by the administration of unspecific exogenous dsRNA. An example involves dsRNA produced by the multiple cloning site (MCS) of L4440, which shares complementary sequences with some widely used reporter vectors and induces partial transgene silencing via the canonical and antiviral RNAi pathway. Going beyond transgene silencing, we found that the reduced embryonic viability of mir-35-41(gk262) mutants is partially reversed by exogenous dsRNA via a mechanism that involves canonical RNAi. These results indicate cross-regulation between different small RNA pathways in C. elegans to regulate embryonic viability. Recognition of the possible unspecific effects elicited by RNAi vectors is important for rigorous interpretation of results from RNAi-based experiments.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Embryo, Nonmammalian , Escherichia coli/genetics , Escherichia coli/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Phenotype , Plasmids/chemistry , Plasmids/metabolism , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1403-1409, 2017 06.
Article in English | MEDLINE | ID: mdl-28213126

ABSTRACT

Classic galactosemia is an inborn error of metabolism caused by deleterious mutations in the GALT gene. A number of evidences indicate that the galactose-1-phosphate accumulation observed in patient cells is a cause of toxicity in this disease. Nevertheless, the consequent molecular events caused by the galactose-1-phosphate accumulation remain elusive. Here we show that intracellular inorganic phosphate levels decreased when yeast models of classic galactosemia were exposed to galactose. The decrease in phosphate levels is probably due to the trapping of phosphate in the accumulated galactose-1-phosphate since the deletion of the galactokinase encoding gene GAL1 suppressed this phenotype. Galactose-induced phosphate depletion caused an increase in glycogen content, an expected result since glycogen breakdown by the enzyme glycogen phosphorylase is dependent on inorganic phosphate. Accordingly, an increase in intracellular phosphate levels suppressed the galactose effect on glycogen content and conferred galactose tolerance to yeast models of galactosemia. These results support the hypothesis that the galactose-induced decrease in phosphate levels leads to toxicity in galactosemia and opens new possibilities for the development of better treatments for this disease.


Subject(s)
Galactose , Galactosemias/metabolism , Models, Biological , Phosphates/metabolism , Saccharomyces cerevisiae/metabolism , Galactokinase/genetics , Galactokinase/metabolism , Galactose/metabolism , Galactose/pharmacology , Galactosemias/genetics , Glycogen/genetics , Glycogen/metabolism , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
BMC Biol ; 14(1): 87, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27717342

ABSTRACT

BACKGROUND: The General Control Nonderepressible 2 (GCN2) kinase is a conserved member of the integrated stress response (ISR) pathway that represses protein translation and helps cells to adapt to conditions of nutrient shortage. As such, GCN2 is required for longevity and stress resistance induced by dietary restriction (DR). IMPACT is an ancient protein that inhibits GCN2. RESULTS: Here, we tested whether IMPACT down-regulation mimics the effects of DR in C. elegans. Knockdown of the C. elegans IMPACT homolog impt-1 activated the ISR pathway and increased lifespan and stress resistance of worms in a gcn-2-dependent manner. Impt-1 knockdown exacerbated DR-induced longevity and required several DR-activated transcription factors to extend lifespan, among them SKN-1 and DAF-16, which were induced during larval development and adulthood, respectively, in response to impt-1 RNAi. CONCLUSIONS: IMPACT inhibits the ISR pathway, thus limiting the activation of stress response factors that are beneficial during aging and required under DR.


Subject(s)
Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Protein Kinases/genetics , RNA Interference , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Trends Cell Biol ; 34(3): 176-179, 2024 03.
Article in English | MEDLINE | ID: mdl-38008607

ABSTRACT

Ageing is a malleable process influenced by the environment. Recent research reveals that neurons interact with peripheral organs to regulate metabolism and longevity by responding to olfactory cues through specific pathways, such as the unfolded protein response (UPR) and microRNAs. Here, we examine the significance of these findings.


Subject(s)
Longevity , Unfolded Protein Response , Humans , Aging/metabolism , Neurons , Proteostasis
10.
Gene ; 895: 148014, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37984536

ABSTRACT

Intertissue RNA transport recently emerged as a novel signaling mechanism. In mammals, mounting evidence suggests that small RNA transfer between cells is widespread and used in various physiological contexts. In the nematode C. elegans, a similar mechanism is conferred by the systemic RNAi pathway. Members of the Systemic RNA Interference Defective (SID) family act at different steps of cellular RNA uptake and export. The limiting step in systemic RNA interference (RNAi) is the import of extracellular RNAs via the conserved double-stranded (dsRNA)-gated dsRNA channel SID-1. To better understand the role of RNAs as intertissue signaling molecules, we modified the function of SID-1 in specific tissues of C. elegans. We observed that sid-1 loss-of-function mutants are as healthy as wild-type worms. Conversely, overexpression of sid-1 in C. elegans intestine, muscle, or neurons rendered worms short-lived. The effects of intestinal sid-1 overexpression were attenuated by silencing the components of systemic RNAi sid-1, sid-2 and sid-5, implicating systemic RNA signaling in the lifespan reduction. Accordingly, tissue-specific overexpression of sid-2 and sid-5 also reduced worm lifespan. Additionally, an RNAi screen for components of several non-coding RNA pathways revealed that silencing the miRNA biogenesis proteins PASH-1 and DCR-1 rendered the lifespan of worms with intestinal sid-1 overexpression similar to controls. Collectively, our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA Interference , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Longevity/genetics , RNA, Double-Stranded/metabolism , Membrane Proteins/genetics , Mammals/genetics
11.
Nat Commun ; 15(1): 3070, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594249

ABSTRACT

Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.


Subject(s)
Caenorhabditis elegans Proteins , MicroRNAs , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress/genetics , Glucagon-Like Peptide 1/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
12.
Biol Open ; 12(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36794708

ABSTRACT

During aging, animals experience a decline in proteostasis activity, including loss of stress-response activation, culminating in the accumulation of misfolded proteins and toxic aggregates, which are causal in the onset of some chronic diseases. Finding genetic and pharmaceutical treatments that can increase organismal proteostasis and lengthen life is an ongoing goal of current research. The regulation of stress responses by cell non-autonomous mechanisms appears to be a potent way to impact organismal healthspan. In this Review, we cover recent findings in the intersection of proteostasis and aging, with a special focus on articles and preprints published between November 2021 and October 2022. A significant number of papers published during this time increased our understanding of how cells communicate with each other during proteotoxic stress. Finally, we also draw attention to emerging datasets that can be explored to generate new hypotheses that explain age-related proteostasis collapse.


Subject(s)
Aging , Proteostasis , Animals , Proteostasis/physiology , Aging/metabolism , Proteins/metabolism
13.
Nat Aging ; 3(8): 938-947, 2023 08.
Article in English | MEDLINE | ID: mdl-37500972

ABSTRACT

Animals rely on chemosensory cues to survive in pathogen-rich environments. In Caenorhabditis elegans, pathogenic bacteria trigger aversive behaviors through neuronal perception and activate molecular defenses throughout the animal. This suggests that neurons can coordinate the activation of organism-wide defensive responses upon pathogen perception. In this study, we found that exposure to volatile pathogen-associated compounds induces activation of the endoplasmic reticulum unfolded protein response (UPRER) in peripheral tissues after xbp-1 splicing in neurons. This odorant-induced UPRER activation is dependent upon DAF-7/transforming growth factor beta (TGF-ß) signaling and leads to extended lifespan and enhanced clearance of toxic proteins. Notably, rescue of the DAF-1 TGF-ß receptor in RIM/RIC interneurons is sufficient to significantly recover UPRER activation upon 1-undecene exposure. Our data suggest that the cell non-autonomous UPRER rewires organismal proteostasis in response to pathogen detection, pre-empting proteotoxic stress. Thus, chemosensation of particular odors may be a route to manipulation of stress responses and longevity.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Caenorhabditis elegans Proteins/genetics , Transforming Growth Factor beta/metabolism , Unfolded Protein Response , Caenorhabditis elegans/metabolism
14.
Front Aging ; 3: 1044556, 2022.
Article in English | MEDLINE | ID: mdl-36389122

ABSTRACT

The proteome of a cell helps to define its functional specialization. Most proteins must be translated and properly folded to ensure their biological function, but with aging, animals lose their ability to maintain a correctly folded proteome. This leads to the accumulation of protein aggregates, decreased stress resistance, and the onset of age-related disorders. The unfolded protein response of the endoplasmic reticulum (UPRER) is a central protein quality control mechanism, the function of which is known to decline with age. Here, we show that age-related UPRER decline in Caenorhabditis elegans occurs at the onset of the reproductive period and is caused by a failure in IRE-1 endoribonuclease activities, affecting both the splicing of xbp-1 mRNA and regulated Ire1 dependent decay (RIDD) activity. Animals with a defect in germline development, previously shown to rescue the transcriptional activity of other stress responses during aging, do not show restored UPRER activation with age. This underlines the mechanistic difference between age-associated loss of UPRER activation and that of other stress responses in this system, and uncouples reproductive status from the activity of somatic maintenance pathways. These observations may aid in the development of strategies that aim to overcome the proteostasis decline observed with aging.

15.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166389, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35301088

ABSTRACT

Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin - an inhibitor of the de novo sphingolipid synthesis pathway - inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.


Subject(s)
Galactosemias , Galactose/metabolism , Galactose/pharmacology , Galactosemias/metabolism , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sphingolipids/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism
16.
Res Integr Peer Rev ; 5(1): 16, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33292815

ABSTRACT

BACKGROUND: Preprint usage is growing rapidly in the life sciences; however, questions remain on the relative quality of preprints when compared to published articles. An objective dimension of quality that is readily measurable is completeness of reporting, as transparency can improve the reader's ability to independently interpret data and reproduce findings. METHODS: In this observational study, we initially compared independent samples of articles published in bioRxiv and in PubMed-indexed journals in 2016 using a quality of reporting questionnaire. After that, we performed paired comparisons between preprints from bioRxiv to their own peer-reviewed versions in journals. RESULTS: Peer-reviewed articles had, on average, higher quality of reporting than preprints, although the difference was small, with absolute differences of 5.0% [95% CI 1.4, 8.6] and 4.7% [95% CI 2.4, 7.0] of reported items in the independent samples and paired sample comparison, respectively. There were larger differences favoring peer-reviewed articles in subjective ratings of how clearly titles and abstracts presented the main findings and how easy it was to locate relevant reporting information. Changes in reporting from preprints to peer-reviewed versions did not correlate with the impact factor of the publication venue or with the time lag from bioRxiv to journal publication. CONCLUSIONS: Our results suggest that, on average, publication in a peer-reviewed journal is associated with improvement in quality of reporting. They also show that quality of reporting in preprints in the life sciences is within a similar range as that of peer-reviewed articles, albeit slightly lower on average, supporting the idea that preprints should be considered valid scientific contributions.

17.
Mol Metab ; 29: 124-135, 2019 11.
Article in English | MEDLINE | ID: mdl-31668384

ABSTRACT

OBJECTIVE: Dietary restriction (DR) improves health and prolongs lifespan in part by upregulating type III endoribonuclease DICER in adipose tissue. In this study, we aimed to specifically test which missing dietary component was responsible for DICER upregulation. METHODS: We performed a nutrient screen in mouse preadipocytes and validated the results in vivo using different kinds of dietary interventions in wild type or genetically modified mice and worms, also testing the requirement of DICER on the effects of the diets. RESULTS: We found that sulfur amino acid restriction (i.e., methionine or cysteine) is sufficient to increase Dicer mRNA expression in preadipocytes. Consistently, while DR increases DICER expression in adipose tissue of mice, this effect is blunted by supplementation of the diet with methionine, cysteine, or casein, but not with a lipid or carbohydrate source. Accordingly, dietary methionine or protein restriction mirrors the effects of DR. These changes are associated with alterations in serum adiponectin. We also found that DICER controls and is controlled by adiponectin. In mice, DICER plays a role in methionine restriction-induced upregulation of Ucp1 in adipose tissue. In C. elegans, DR and a model of methionine restriction also promote DICER expression in the intestine (an analog of the adipose tissue) and prolong lifespan in a DICER-dependent manner. CONCLUSIONS: We propose an evolutionary conserved mechanism in which dietary sulfur amino acid restriction upregulates DICER levels in adipose tissue leading to beneficial health effects.


Subject(s)
Cysteine/deficiency , DEAD-box RNA Helicases/metabolism , Methionine/deficiency , Adipocytes/cytology , Adipocytes/metabolism , Adiponectin/blood , Adiponectin/metabolism , Adipose Tissue, Beige/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , Diet/methods , Diet/veterinary , Intestinal Mucosa/metabolism , Longevity , Male , Mice, Inbred C57BL , Mice, Knockout , Ribonuclease III/genetics , Ribonuclease III/metabolism , Uncoupling Protein 1/metabolism , Up-Regulation
18.
Redox Biol ; 18: 84-92, 2018 09.
Article in English | MEDLINE | ID: mdl-29986212

ABSTRACT

Alterations in microRNA (miRNA) processing have been previously linked to aging. Here we used the small molecule enoxacin to pharmacologically interfere with miRNA biogenesis and study how it affects aging in C. elegans. Enoxacin extended worm lifespan and promoted survival under normal and oxidative stress conditions. Enoxacin-induced longevity required the transcription factor SKN-1/Nrf2 and was blunted by the antioxidant N-acetyl-cysteine, suggesting a prooxidant-mediated mitohormetic response. The longevity effects of enoxacin were also dependent on the miRNA pathway, consistent with changes in miRNA expression elicited by the drug. Among these differentially expressed miRNAs, the widely conserved miR-34-5p was found to play an important role in enoxacin-mediated longevity. Enoxacin treatment down-regulated miR-34-5p and did not further extend lifespan of long-lived mir-34 mutants. Moreover, N-acetyl-cysteine abrogated mir-34(gk437)-induced longevity. Evidence also points to double-stranded RNA-specific adenosine deaminases (ADARs) as new targets of enoxacin since ADAR loss-of-function abrogates enoxacin-induced lifespan extension. Thus, enoxacin increases lifespan by reducing miR-34-5p levels, interfering with the redox balance and promoting healthspan.


Subject(s)
Caenorhabditis elegans/drug effects , Enoxacin/pharmacology , Gene Expression Regulation/drug effects , Longevity/drug effects , MicroRNAs/genetics , Oxidative Stress/drug effects , Animals , Caenorhabditis elegans/physiology , Cytochrome P-450 CYP1A2 Inhibitors/pharmacology , Oxidation-Reduction/drug effects , Topoisomerase II Inhibitors/pharmacology
19.
Dis Model Mech ; 7(1): 55-61, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24077966

ABSTRACT

Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast), which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.


Subject(s)
Galactosemias/enzymology , Galactosemias/genetics , Gene Expression Regulation, Fungal , Unfolded Protein Response , Alternative Splicing , Basic-Leucine Zipper Transcription Factors/metabolism , Endoplasmic Reticulum/metabolism , Fungal Proteins/metabolism , Galactokinase/metabolism , Galactose/metabolism , Galactosephosphates/chemistry , Glycoproteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Mutation/drug effects , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Protein Folding , RNA, Messenger/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL