Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38823389

ABSTRACT

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Subject(s)
Neoplasms , Purine Nucleotides , Purines , Animals , Mice , Purines/metabolism , Purines/biosynthesis , Neoplasms/metabolism , Neoplasms/pathology , Purine Nucleotides/metabolism , Humans , Inosine/metabolism , Hypoxanthine/metabolism , Mice, Inbred C57BL , Adenine/metabolism , Cell Line, Tumor , Female
2.
Nature ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143213

ABSTRACT

Most kidney cancers are metabolically dysfunctional1-4, but how this dysfunction affects cancer progression in humans is unknown. We infused 13C-labelled nutrients in over 80 patients with kidney cancer during surgical tumour resection. Labelling from [U-13C]glucose varies across subtypes, indicating that the kidney environment alone cannot account for all tumour metabolic reprogramming. Compared with the adjacent kidney, clear cell renal cell carcinomas (ccRCCs) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in ex vivo organotypic cultures, indicating that suppressed labelling is tissue intrinsic. [1,2-13C]acetate and [U-13C]glutamine infusions in patients, coupled with measurements of respiration in isolated human kidney and tumour mitochondria, reveal lower electron transport chain activity in ccRCCs that contributes to decreased oxidative and enhanced reductive TCA cycle labelling. However, ccRCC metastases unexpectedly have enhanced TCA cycle labelling compared with that of primary ccRCCs, indicating a divergent metabolic program during metastasis in patients. In mice, stimulating respiration or NADH recycling in kidney cancer cells is sufficient to promote metastasis, whereas inhibiting electron transport chain complex I decreases metastasis. These findings in humans and mice indicate that metabolic properties and liabilities evolve during kidney cancer progression, and that mitochondrial function is limiting for metastasis but not growth at the original site.

3.
Sci Adv ; 10(13): eado7808, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536918

ABSTRACT

The glutamine antagonist DRP-104 blocks purine synthesis and combines with checkpoint inhibitors to promote antitumor immunity in KEAP1/NRF2-mutant lung cancers.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Kelch-Like ECH-Associated Protein 1 , Glutamine , NF-E2-Related Factor 2/metabolism
4.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260449

ABSTRACT

Cutaneous melanomas harboring a B-RafV600E mutation are treated with immune check point inhibitors or kinase inhibitor combination therapies relying on MAPK inhibitors (MAPKi) Dabrafenib and Trametinib (Curti and Faries, 2021). However, cells become resistant to treatments over the timespan of a few months. Resistance to MAPKi has been associated with adoption of an aggressive amoeboid phenotype characterized by elevated RhoA signaling, enhanced contractility and thick cortical filamentous actin (F-actin) structures (Kim et al., 2016; Misek et al., 2020). Targeting active RhoA through Rho-kinase (ROCK) inhibitors, either alone or in combination with immunotherapies, reverts MAPKi-resistance (Misek et al., 2020; Orgaz et al., 2020). Yet, the mechanisms for this behavior remain largely unknown. Given our recent findings of cytoskeleton's role in cancer cell proliferation (Mohan et al., 2019), survival (Weems et al., 2023), and metabolism (Park et al., 2020), we explored possibilities by which RhoA-driven changes in cytoskeleton structure may confer resistance. We confirmed elevated activation of RhoA in a panel of MAPKi-resistant melanoma cell lines, leading to a marked increase in the presence of contractile F-actin bundles. Moreover, these cells had increased glucose uptake and glycolysis, a phenotype disrupted by pharmacological perturbation of ROCK. However, glycolysis was unaffected by disruption of F-actin bundles, indicating that glycolytic stimulation in MAPKi-resistant melanoma is independent of F-actin organization. Instead, our findings highlight a mechanism in which elevated RhoA signaling activates ROCK, leading to the activation of insulin receptor substrate 1 (IRS1) and P85 of the PI3K pathway, which promotes cell surface expression of GLUT1 and elevated glucose uptake. Application of ROCK inhibitor GSK269962A results in reduced glucose uptake and glycolysis, thus impeding cell proliferation. Our study adds a mechanism to the proposed use of ROCK inhibitors for long-term treatments on MAPKi-resistant melanomas.

5.
Nat Biomed Eng ; 8(6): 787-799, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438799

ABSTRACT

Extracellular pH impacts many molecular, cellular and physiological processes, and hence is tightly regulated. Yet, in tumours, dysregulated cancer cell metabolism and poor vascular perfusion cause the tumour microenvironment to become acidic. Here by leveraging fluorescent pH nanoprobes with a transistor-like activation profile at a pH of 5.3, we show that, in cancer cells, hydronium ions are excreted into a small extracellular region. Such severely polarized acidity (pH <5.3) is primarily caused by the directional co-export of protons and lactate, as we show for a diverse panel of cancer cell types via the genetic knockout or inhibition of monocarboxylate transporters, and also via nanoprobe activation in multiple tumour models in mice. We also observed that such spot acidification in ex vivo stained snap-frozen human squamous cell carcinoma tissue correlated with the expression of monocarboxylate transporters and with the exclusion of cytotoxic T cells. Severely spatially polarized tumour acidity could be leveraged for cancer diagnosis and therapy.


Subject(s)
Monocarboxylic Acid Transporters , Tumor Microenvironment , Hydrogen-Ion Concentration , Humans , Animals , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Mice , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Lactic Acid/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Extracellular Space/metabolism
6.
Neuromuscul Disord ; 43: 14-19, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39173541

ABSTRACT

Myopathy is a common manifestation in mitochondrial disorders, but the pathomechanisms are still insufficiently studied in children. Here, we report a severe, progressive mitochondrial myopathy in a four-year-old child, who died at eight years. He developed progressive loss of muscle strength with nocturnal hypoventilation and dilated cardiomyopathy. Skeletal muscle showed ragged red fibers and severe combined respiratory chain deficiency. Mitochondrial DNA sequencing revealed a novel m.5670A>G mutation in mitochondrial tRNAAsn (MTTN) with 88 % heteroplasmy in muscle. The proband also had systemic NAD+ deficiency but rescuing this with the NAD+ precursor niacin did not stop disease progression. Targeted metabolomics revealed an overall shift of metabolism towards controls after niacin supplementation, with normalized tryptophan metabolites and lipid-metabolic markers, but most amino acids did not respond to niacin therapy. To conclude, we report a new MTTN mutation, secondary NAD+ deficiency in childhood-onset mitochondrial myopathy with metabolic but meager clinical response to niacin supplementation.

7.
Nat Metab ; 6(1): 113-126, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38167727

ABSTRACT

Chronic stress and inflammation are both outcomes and major drivers of many human diseases. Sustained responsiveness despite mitigation suggests a failure to sense resolution of the stressor. Here we show that a proteolytic cleavage event of fatty acid synthase (FASN) activates a global cue for stress resolution in Caenorhabditis elegans. FASN is well established for biosynthesis of the fatty acid palmitate. Our results demonstrate FASN promoting an anti-inflammatory profile apart from palmitate synthesis. Redox-dependent proteolysis of limited amounts of FASN by caspase activates a C-terminal fragment sufficient to downregulate multiple aspects of stress responsiveness, including gene expression, metabolic programs and lipid droplets. The FASN C-terminal fragment signals stress resolution in a cell non-autonomous manner. Consistent with these findings, FASN processing is also seen in well-fed but not fasted male mouse liver. As downregulation of stress responses is critical to health, our findings provide a potential pathway to control diverse aspects of stress responses.


Subject(s)
Fatty Acid Synthases , Fatty Acids , Animals , Male , Mice , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Palmitates , Proteolysis , Caenorhabditis elegans , Fatty Acid Synthase, Type I
8.
bioRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38765991

ABSTRACT

Lipids are essential for tumours because of their structural, energetic, and signaling roles. While many cancer cells upregulate lipid synthesis, growing evidence suggests that tumours simultaneously intensify the uptake of circulating lipids carried by lipoproteins. Which mechanisms promote the uptake of extracellular lipids, and how this pool of lipids contributes to cancer progression, are poorly understood. Here, using functional genetic screens, we find that lipoprotein uptake confers resistance to lipid peroxidation and ferroptotic cell death. Lipoprotein supplementation robustly inhibits ferroptosis across numerous cancer types. Mechanistically, cancer cells take up lipoproteins through a pathway dependent on sulfated glycosaminoglycans (GAGs) linked to cell-surface proteoglycans. Tumour GAGs are a major determinant of the uptake of both low and high density lipoproteins. Impairment of glycosaminoglycan synthesis or acute degradation of surface GAGs decreases the uptake of lipoproteins, sensitizes cells to ferroptosis and reduces tumour growth in mice. We also find that human clear cell renal cell carcinomas, a distinctively lipid-rich tumour type, display elevated levels of lipoprotein-derived antioxidants and the GAG chondroitin sulfate than non-malignant human kidney. Altogether, our work identifies lipoprotein uptake as an essential anti-ferroptotic mechanism for cancer cells to overcome lipid oxidative stress in vivo, and reveals GAG biosynthesis as an unexpected mediator of this process.

9.
Nat Commun ; 15(1): 4266, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769298

ABSTRACT

Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.


Subject(s)
Carcinogenesis , Indoles , Liver Neoplasms , Proto-Oncogene Proteins c-myc , Tryptophan , Tryptophan/metabolism , Animals , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Indoles/metabolism , Indoles/pharmacology , Humans , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice , Carcinogenesis/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Kynurenine/metabolism , Mice, Inbred C57BL , Liver/metabolism , Liver/pathology , Male
10.
Science ; 384(6701): eadj4301, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870309

ABSTRACT

Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial ß-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.


Subject(s)
Acetyl Coenzyme A , Hepatocytes , Liver Regeneration , Mitochondria, Liver , Pyruvic Acid , Animals , Hepatocytes/metabolism , Acetyl Coenzyme A/metabolism , Mice , Pyruvic Acid/metabolism , Mitochondria, Liver/metabolism , Oxidation-Reduction , Cell Proliferation , Fatty Acids/metabolism , Liver/metabolism , Electron Transport , Mice, Inbred C57BL , Mitochondria/metabolism , Male
11.
Cell Metab ; 36(7): 1504-1520.e9, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38876105

ABSTRACT

Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.


Subject(s)
Mitochondria , Purines , Humans , Purines/metabolism , Purines/pharmacology , Mitochondria/metabolism , Electron Transport , Hypoxanthine Phosphoribosyltransferase/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Pentose Phosphate Pathway , Fibroblasts/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Cell Line, Tumor , Animals , Biological Transport
12.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38464291

ABSTRACT

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

SELECTION OF CITATIONS
SEARCH DETAIL