Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 324(4): H473-H483, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36735405

ABSTRACT

Excess salt consumption contributes to hypertension and arterial dysfunction in humans living in industrialized societies. However, this arterial phenotype is not typically observed in inbred, genetically identical mouse strains that consume a high-salt (HS) diet. Therefore, we sought to determine the effects of HS diet consumption on systolic blood pressure (BP) and arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent a low-salt [LS (1% NaCl)] or HS (4% NaCl) diet for 12 wk. Systolic BP and aortic stiffness, determined by pulse wave velocity (PWV), were increased in HS after 2 and 4 wk, respectively, compared with baseline and continued to increase through week 12 (P < 0.05). Systolic BP was higher from weeks 2-12 and PWV was higher from weeks 4-12 in HS compared with LS mice (P < 0.05). Aortic collagen content was ∼81% higher in HS compared with LS (P < 0.05), whereas aortic elastin content was similar between groups (P > 0.05). Carotid artery endothelium-dependent dilation (EDD) was ∼10% lower in HS compared with LS (P < 0.05), endothelium-independent dilation was similar between groups (P > 0.05). Finally, there was a strong relationship between systolic BP and PWV (r2 = 0.40, P < 0.05), as well as inverse relationship between EDD and systolic BP (r2 = 0.21, P < 0.05) or PWV (r2 = 0.20, P < 0.05). In summary, HS diet consumption in UM-HET3 mice increases systolic BP, which is accompanied by aortic stiffening and impaired EDD. These data suggest that outbred, genetically diverse mice may provide unique translational insight into arterial adaptations of humans that consume an HS diet.NEW & NOTEWORTHY Excess salt consumption is a contributor to hypertension and arterial dysfunction in humans living in industrialized societies, but this phenotype is not observed in inbred, genetically identical mice that consume a high-salt (HS) diet. This study reveals that a HS diet in outbred, genetically diverse mice progressively increases systolic blood pressure and induce arterial dysfunction. These data suggest that genetically diverse mice may provide translational insight into arterial adaptations in humans that consume an HS diet.


Subject(s)
Hypertension , Sodium Chloride , Humans , Male , Female , Mice , Animals , Blood Pressure , Sodium Chloride/pharmacology , Pulse Wave Analysis , Sodium Chloride, Dietary , Diet
2.
Am J Physiol Heart Circ Physiol ; 322(2): H328-H335, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34995168

ABSTRACT

Many individuals in industrialized societies consume a high-salt, Western diet(WD); however, the effects of this diet on microcirculatory properties and glycocalyx barrier function are unknown. Young genetically heterogeneous male and female mice underwent 12 wk of normal chow (NC) diet, NC diet with 4% salt (NC4%), Western diet (WD), or WD with 4% salt (WD4%). Microcirculatory properties and glycocalyx barrier function were evaluated in the mesenteric microcirculation, using an intravital microscope equipped with an automated capture and analysis system. Total microvascular density summed across 4- to 25-µm microvessel segment diameters was lower in NC4% than in NC and WD (P < 0.05). Perfused boundary region (PBR), a marker of glycocalyx barrier function, averaged across 4- to 25-µm microvessel segment diameters was similar between NC and NC4%, as well as between WD and WD4% (P > 0.05). PBR was lower in WD and WD4% than in NC and NC4% (P < 0.05), indicating augmented glycocalyx barrier function in WD and WD4%. There were strong, inverse relationships between PBR and adiposity and blood glucose (r = -0.44 to -0.61, P < 0.05). In summary, NC4% induces deleterious effects on microvascular density, whereas WD augments glycocalyx barrier function. Interestingly, the combination of high-salt, Western diet in WD4% resulted in lower total microvascular density like NC4% and augmented glycocalyx barrier function like WD. These data suggest distinct microcirculatory adaptations to high-salt and Western diets that coincide when these diets are combined in young genetically heterogeneous male and female mice.NEW & NOTEWORTHY Many individuals in industrialized societies consume a combination of high-salt and Western diet; however, the effects of this diet on microcirculatory and glycocalyx properties are unknown. This study reveals that a high-salt diet lowers microcirculatory and glycocalyx properties, whereas a Western diet augments glycocalyx barrier function and thickness. Taken together, these data indicate that there are distinct microcirculatory adaptations to high-salt and Western diets that coincide when high-salt and Western diets are combined.


Subject(s)
Diet, Western , Glycocalyx/metabolism , Microcirculation , Sodium Chloride, Dietary/adverse effects , Adiposity , Animals , Animals, Outbred Strains , Blood Glucose/metabolism , Female , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiology , Mice , Microvessels/drug effects , Microvessels/metabolism , Microvessels/physiology
3.
Front Nutr ; 9: 1090023, 2022.
Article in English | MEDLINE | ID: mdl-36687716

ABSTRACT

Western diet (WD), characterized by excess saturated fat and sugar intake, is a major contributor to obesity and metabolic and arterial dysfunction in humans. However, these phenotypes are not consistently observed in traditional inbred, genetically identical mice. Therefore, we sought to determine the effects of WD on visceral adiposity and metabolic/arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent normal chow (NC) or WD for 12 weeks. Body mass and visceral adiposity were higher in WD compared to NC (P < 0.05). Female WD mice had greater visceral adiposity than male WD mice (P < 0.05). The results of glucose and insulin tolerance tests demonstrated that metabolic function was lower in WD compared to NC mice (P < 0.05). Metabolic dysfunction in WD as was driven by male mice, as metabolic function in female WD mice was unchanged (P > 0.05). Systolic blood pressure (BP) and aortic stiffness were increased in WD after 2 weeks compared to baseline and continued to increase through week 12 (P < 0.05). Systolic BP and aortic stiffness were higher from weeks 2-12 in WD compared to NC (P < 0.05). Aortic collagen content was higher in WD compared to NC (P < 0.05). Carotid artery endothelium-dependent dilation was lower in WD compared to NC (P < 0.05). These data suggest sex-related differences in visceral adiposity and metabolic dysfunction in response to WD. Despite this, arterial dysfunction was similar in male and female WD mice, indicating this model may provide unique translational insight into similar sex-related observations in humans that consume WD.

SELECTION OF CITATIONS
SEARCH DETAIL