Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Int J Cancer ; 132(3): E149-57, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-22948716

ABSTRACT

Inhibition of centromere-associated protein-E (CENP-E) has demonstrated preclinical anti-tumor activity in a number of tumor types including neuroblastoma. A potent small molecule inhibitor of the kinesin motor activity of CENP-E has recently been developed (GSK923295). To identify an effective drug combination strategy for GSK923295 in neuroblastoma, we performed a screen of siRNAs targeting a prioritized set of genes that function in therapeutically tractable signaling pathways. We found that siRNAs targeted to extracellular signal-related kinase 1 (ERK1) significantly sensitized neuroblastoma cells to GSK923295-induced growth inhibition (p = 0.01). Inhibition of ERK1 activity using pharmacologic inhibitors of mitogen-activated ERK kinase (MEK1/2) showed significant synergistic growth inhibitory activity when combined with GSK923295 in neuroblastoma, lung, pancreatic and colon carcinoma cell lines. Synergistic growth inhibitory activity of combined MEK/ERK and CENP-E inhibition was a result of increased mitotic arrest and apoptosis. There was a significant correlation between ERK1/2 phosphorylation status in neuroblastoma cell lines and GSK923295 growth inhibitory activity (r = 0.823, p = 0.0006). Consistent with this result we found that lung cancer cell lines harboring RAS mutations, which leads to oncogenic activation of MEK/ERK signaling, were significantly more resistant than cell lines with wild-type RAS to GSK923295-induced growth inhibition (p = 0.047). Here we have identified (MEK/ERK) activity as a potential biomarker of relative GSK923295 sensitivity and have shown the synergistic effect of combinatorial MEK/ERK pathway and CENP-E inhibition across different cancer cell types including neuroblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Sarcosine/analogs & derivatives , Apoptosis/drug effects , Benzamides/pharmacology , Biomarkers, Tumor , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Irinotecan , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , M Phase Cell Cycle Checkpoints/drug effects , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Neuroblastoma/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , RNA Interference , RNA, Small Interfering , Sarcosine/pharmacology , Temozolomide
2.
Nat Cell Biol ; 8(8): 855-62, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16845383

ABSTRACT

The tumour suppressor p53 induces apoptosis or cell-cycle arrest in response to genotoxic and other stresses. In unstressed cells, the anti-proliferative effects of p53 are restrained by mouse double minute 2 (Mdm2), a ubiquitin ligase (E3) that promotes p53 ubiquitination and degradation. Mdm2 also mediates its own degradation through auto-ubiquitination. It is unclear how the cis- and trans-E3 activities of Mdm2, which have opposing effects on cell fate, are differentially regulated. Here, we show that death domain-associated protein (Daxx) is required for Mdm2 stability. Downregulation of Daxx decreases Mdm2 levels, whereas overexpression of Daxx strongly stabilizes Mdm2. Daxx simultaneously binds to Mdm2 and the deubiquitinase Hausp, and it mediates the stabilizing effect of Hausp on Mdm2. In addition, Daxx enhances the intrinsic E3 activity of Mdm2 towards p53. On DNA damage, Daxx dissociates from Mdm2, which correlates with Mdm2 self-degradation. These findings reveal that Daxx modulates the function of Mdm2 at multiple levels and suggest that the disruption of the Mdm2-Daxx interaction may be important for p53 activation in response to DNA damage.


Subject(s)
Carrier Proteins/physiology , Intracellular Signaling Peptides and Proteins/physiology , Nuclear Proteins/physiology , Proto-Oncogene Proteins c-mdm2/metabolism , Animals , Blotting, Western , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Co-Repressor Proteins , DNA Damage , Endopeptidases/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HCT116 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Microscopy, Fluorescence , Models, Biological , Molecular Chaperones , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Proto-Oncogene Proteins c-mdm2/genetics , RNA Interference , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Ubiquitin Thiolesterase , Ubiquitin-Specific Peptidase 7
3.
Curr Opin Genet Dev ; 18(1): 68-72, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18339543

ABSTRACT

New technologies as well as concerted brute-force approaches have increased the content (number of genes) that can be characterized for genomic DNA alterations. Recent advances include the detection of activating point mutations in key kinase genes (BRAF, EGFR, and PIK3CA) in multiple cancer types: preliminary insight into the entire repertoire of genes that can be mutated in cancer; the discovery of new oncogenes by high-resolution profiling of DNA copy number alterations; and the bioinformatic-driven discovery of oncogenic gene fusions. High-content promoter methylation detection systems have been used to discover additional methylated genes and have provided evidence for a stem cell origin for certain tumors. Some of these advances have had significant impact on the development and clinical testing of new therapeutics.


Subject(s)
Genes, Neoplasm , Neoplasms/genetics , DNA Mutational Analysis , DNA, Neoplasm/chemistry , Epigenesis, Genetic , Gene Dosage , Genome, Human , Humans , Oncogene Proteins, Fusion/genetics , Translocation, Genetic
4.
Genomics ; 98(4): 296-301, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21600279

ABSTRACT

Identification of biomarkers for positive and negative predictors of response to cancer therapeutics can help direct clinical strategies. However, challenges with tissue availability and costs are significant limiting factors for diagnostic assays. To address these challenges, we have customized a high-throughput single nucleotide polymorphism genotyping assay with the objective of simultaneously surveying known somatic mutations and copy number alterations for translational studies in cancer. As constructed, this assay can interrogate 376 known somatic mutations and quantify copy number alterations of genes commonly implicated in tumorigenesis or progression. Validation of this assay on a panel of 321 cell lines demonstrates sensitivity to accurately detect mutations, robust accuracy in the presence of infiltrating normal tissue, and the ability to detect both DNA copy number amplifications and deletions. This technology, with its high sensitivity, small DNA requirements, and low costs is an attractive platform for biomarker exploration in cancer.


Subject(s)
Gene Dosage/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Oncogenes/genetics , Point Mutation/genetics , Cell Line, Tumor , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Sensitivity and Specificity
5.
Genes Chromosomes Cancer ; 50(8): 606-18, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21563232

ABSTRACT

Identification and characterization of underlying genetic aberrations could facilitate diagnosis and treatment of ovarian cancer. Copy number analysis using array Comparative Genomic Hybridization (aCGH) on 93 primary ovarian tumors identified PI3K/AKT pathway as the most frequently altered cancer related pathway. Furthermore, survival analyses to correlate gene copy number and mutation data with patient outcome showed that copy number gains of PIK3CA, PIK3CB, and PIK3R4 in these tumors were associated with decreased survival. To confirm these findings at the protein level, immunohistochemistry (IHC) for PIK3CA product p110α and p-Akt was performed on tissue microarrays from 522 independent serous ovarian cancers. Overexpression of either of these two proteins was found to be associated with decreased survival. Multivariant analysis from these samples further showed that overexpression of p-AKT and/or p110α is an independent prognostic factor for these tumors. siRNAs targeting altered PI3K/AKT pathway genes inhibited proliferation and induced apoptosis in ovarian cancer cell lines. In addition, the effect of the siRNAs in different cell lines seemed to correlate with the particular genetic alterations that the cell line carries. These results strongly support the utilization of PI3K pathway inhibitors in ovarian cancer. They also suggest identifying the specific component in the PI3K pathway that is genetically altered has the potential to help select the most effective therapy. Both mutation as well as copy number changes can be used as predictive markers for this purpose.


Subject(s)
Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/genetics , Cell Growth Processes/genetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Comparative Genomic Hybridization/methods , Female , Gene Dosage , Humans , Immunohistochemistry/methods , Mutation , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Signal Transduction
6.
J Transl Med ; 9: 110, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21762492

ABSTRACT

BACKGROUND: Aurora kinases play critical roles in mitosis and are being evaluated as therapeutic targets in cancer. GSK1070916 is a potent, selective, ATP competitive inhibitor of Aurora kinase B and C. Translation of predictive biomarkers to the clinic can benefit patients by identifying the tumors that are more likely to respond to therapies, especially novel inhibitors such as GSK1070916. METHODS: 59 Hematological cancer-derived cell lines were used as models for response where in vitro sensitivity to GSK1070916 was based on both time and degree of cell death. The response data was analyzed along with karyotype, transcriptomics and somatic mutation profiles to determine predictors of response. RESULTS: 20 cell lines were sensitive and 39 were resistant to treatment with GSK1070916. High chromosome number was more prevalent in resistant cell lines (p-value = 0.0098, Fisher Exact Test). Greater resistance was also found in cell lines harboring polyploid subpopulations (p-value = 0.00014, Unpaired t-test). A review of NOTCH1 mutations in T-ALL cell lines showed an association between NOTCH1 mutation status and chromosome number (p-value = 0.0066, Fisher Exact Test). CONCLUSIONS: High chromosome number associated with resistance to the inhibition of Aurora B and C suggests cells with a mechanism to bypass the high ploidy checkpoint are resistant to GSK1070916. High chromosome number, a hallmark trait of many late stage hematological malignancies, varies in prevalence among hematological malignancy subtypes. The high frequency and relative ease of measurement make high chromosome number a viable negative predictive marker for GSK1070916.


Subject(s)
Aza Compounds/pharmacology , Chromosomes, Human/genetics , Hematologic Neoplasms/enzymology , Hematologic Neoplasms/genetics , Indoles/pharmacology , Polyploidy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Aurora Kinase B , Aurora Kinases , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Diploidy , Drug Resistance, Neoplasm/drug effects , Hematologic Neoplasms/pathology , Humans , Mutation/genetics , Phenotype , Prognosis , Protein Serine-Threonine Kinases/metabolism , Receptors, Notch/genetics
7.
Genes Chromosomes Cancer ; 49(2): 144-54, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19862823

ABSTRACT

Abnormal expression of major histocompatibility complex (MHC) molecules in melanoma has been reported previously. However, the MHC molecule expression patterns in different growth phases of melanoma and the underlying mechanisms are not well understood. Here, we demonstrate that in vertical growth phase (VGP) melanomas, MHC genes are subject to increased rates of DNA copy number gains, accompanied by increased expression, in comparison to normal melanocytes. In contrast, MHC expression in metastatic melanomas drastically decreased compared to VGP melanomas, despite still prevalent DNA copy number gains. Subsequent investigations found that the master transactivator of MHC genes, CIITA, was also significantly downregulated in metastatic melanomas when compared to VGP melanomas. This could be one of the mechanisms accounting for the discrepancy between DNA copy number and expression level in metastatic melanomas, a potentially separate mechanism of gene regulation. These results infer a dynamic role of MHC function in melanoma progression. We propose potential mechanisms for the overexpression of MHC molecules in earlier stages of melanoma as well as for its downregulation in metastatic melanomas.


Subject(s)
Gene Expression Regulation, Neoplastic , Major Histocompatibility Complex/genetics , Melanoma/genetics , Antigens, Differentiation, B-Lymphocyte/analysis , Blotting, Western , Cell Culture Techniques , Cell Line, Tumor , DNA Primers , Disease Progression , Down-Regulation , Gene Amplification , Histocompatibility Antigens Class II/analysis , Humans , Melanocytes/cytology , Melanocytes/immunology , Melanoma/immunology , Melanoma/pathology , Neoplasm Metastasis/genetics , Oligonucleotide Array Sequence Analysis , Reference Values , Transcription, Genetic
8.
Trends Mol Med ; 10(8): 359-61, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15310454

ABSTRACT

PPM1D encodes WIP1, a serine-threonine phosphatase that had previously been shown to be the driver oncogene of a 17q23 amplicon that is present in approximately 15% of human breast tumors. However, it is unknown whether it has any role in the remaining 85% of breast tumors. A recent study using Wip1-deficient mice revealed that blocking its function significantly impaired RAS and ERBB2-induced breast tumor formation, suggesting that the inhibition of Wip1 could be a broad-spectrum treatment for breast cancer. However, because of the structure of Wip1, the development of small molecule inhibitors is a significant challenge.


Subject(s)
Breast Neoplasms/prevention & control , Neoplasm Proteins/physiology , Phosphoprotein Phosphatases/physiology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Genes, ras/physiology , Humans , Mice , Mice, Knockout , Mice, Transgenic , Neoplasm Proteins/deficiency , Phosphoprotein Phosphatases/deficiency , Protein Phosphatase 2C , Receptor, ErbB-2/metabolism
9.
Cancer Cell ; 28(1): 57-69, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26175415

ABSTRACT

Epigenetic dysregulation has emerged as an important mechanism in cancer. Alterations in epigenetic machinery have become a major focus for targeted therapies. The current report describes the discovery and biological activity of a cyclopropylamine containing inhibitor of Lysine Demethylase 1 (LSD1), GSK2879552. This small molecule is a potent, selective, orally bioavailable, mechanism-based irreversible inactivator of LSD1. A proliferation screen of cell lines representing a number of tumor types indicated that small cell lung carcinoma (SCLC) is sensitive to LSD1 inhibition. The subset of SCLC lines and primary samples that undergo growth inhibition in response to GSK2879552 exhibit DNA hypomethylation of a signature set of probes, suggesting this may be used as a predictive biomarker of activity.


Subject(s)
Antineoplastic Agents/administration & dosage , Benzoates/administration & dosage , Cyclopropanes/administration & dosage , DNA Methylation/drug effects , Enzyme Inhibitors/administration & dosage , Histone Demethylases/antagonists & inhibitors , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Administration, Oral , Animals , Antineoplastic Agents/pharmacology , Benzoates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclopropanes/pharmacology , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Molecular Sequence Data , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Xenograft Model Antitumor Assays
10.
Oncotarget ; 4(12): 2419-29, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24293458

ABSTRACT

BET (bromodomain and extra-terminal) proteins regulate gene expression through their ability to bind to acetylated chromatin and subsequently activate RNA PolII-driven transcriptional elongation. Small molecule BET inhibitors prevent binding of BET proteins to acetylated histones and inhibit transcriptional activation of BET target genes. BET inhibitors attenuate cell growth and survival in several hematologic cancer models, partially through the down-regulation of the critical oncogene, MYC. We hypothesized that BET inhibitors will regulate MYC expression in solid tumors that frequently over-express MYC. Here we describe the effects of the highly specific BET inhibitor, I-BET762, on MYC expression in prostate cancer models. I-BET762 potently reduced MYC expression in prostate cancer cell lines and a patient-derived tumor model with subsequent inhibition of cell growth and reduction of tumor burden in vivo. Our data suggests that I-BET762 effects are partially driven by MYC down-regulation and underlines the critical importance of additional mechanisms of I-BET762 induced phenotypes.


Subject(s)
Benzodiazepines/pharmacology , Nuclear Proteins/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Growth Processes/physiology , Cell Line, Tumor , Down-Regulation , Gene Expression Profiling , Humans , Male , Mice , Mice, SCID , Prostatic Neoplasms, Castration-Resistant/enzymology , Prostatic Neoplasms, Castration-Resistant/pathology , Xenograft Model Antitumor Assays
11.
Mol Cancer Ther ; 11(3): 720-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22169769

ABSTRACT

The MEK1 and MEK2 inhibitor GSK1120212 is currently in phase II/III clinical development. To identify predictive biomarkers, sensitivity to GSK1120212 was profiled for 218 solid tumor cell lines and 81 hematologic malignancy cell lines. For solid tumors, RAF/RAS mutation was a strong predictor of sensitivity. Among RAF/RAS mutant lines, co-occurring PIK3CA/PTEN mutations conferred a cytostatic response instead of a cytotoxic response for colon cancer cells that have the biggest representation of the comutations. Among KRAS mutant cell lines, transcriptomics analysis showed that cell lines with an expression pattern suggestive of epithelial-to-mesenchymal transition were less sensitive to GSK1120212. In addition, a proportion of cell lines from certain tissue types not known to carry frequent RAF/RAS mutations also seemed to be sensitive to GSK1120212. Among these were breast cancer cell lines, with triple negative breast cancer cell lines being more sensitive than cell lines from other breast cancer subtypes. We identified a single gene DUSP6, whose expression was associated with sensitivity to GSK1120212 and lack of expression associated with resistance irrelevant of RAF/RAS status. Among hematologic cell lines, acute myeloid leukemia and chronic myeloid leukemia cell lines were particularly sensitive. Overall, this comprehensive predictive biomarker analysis identified additional efficacy biomarkers for GSK1120212 in RAF/RAS mutant solid tumors and expanded the indication for GSK1120212 to patients who could benefit from this therapy despite the RAF/RAS wild-type status of their tumors.


Subject(s)
Biomarkers, Tumor/genetics , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Pyridones/pharmacology , Pyrimidinones/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 2/metabolism , Molecular Structure , Mutation , Oligonucleotide Array Sequence Analysis , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridones/chemistry , Pyrimidinones/chemistry , Transcriptome , raf Kinases/genetics , raf Kinases/metabolism , ras Proteins/genetics , ras Proteins/metabolism
12.
Oncotarget ; 2(12): 1254-64, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22248814

ABSTRACT

RNAi screening holds the promise of systemizing the search for combination therapeutic strategies. Here we performed a pooled shRNA library screen to look for promising targets to inhibit in combination with inhibition of the mitotic regulator polo-like kinase (PLK1). The library contained ~4,500 shRNAs targeting various signaling and cancer-related genes and was screened in four lung cancer cell lines using both high (IC80) and low (IC20) amounts of the PLK1 inhibitor GSK461364. The relative abundance of cells containing individual shRNAs following drug treatment was determined by microarray analysis, using the mock treatment replicates as the normalizing reference. Overall, the inferred influences of individual shRNAs in both high and low drug treatment were remarkably similar in all four cell lines and involved a large percentage of the library. To investigate which functional categories of shRNAs were most prominent in influencing drug response, we used statistical analysis of microarrays (SAM) in combination with a filter for genes that had two or more concordant shRNAs. The most significant functional categories that came out of this analysis included receptor tyrosine kinases and nuclear hormone receptors. Through individual validation experiments, we determined that the two shRNAs from the library targeting the nuclear retinoic acid receptor gene RARA did indeed silence RARA expression and as predicted conferred resistance to GSK461364. This led us to test whether activation of RARA receptor with retinoids could sensitize cells to GSK461364. We found that retinoids did increase the drug sensitivity and enhanced the ability of PLK1 inhibition to induce mitotic arrest and apoptosis. These results suggest that retinoids could be used to enhance the effectiveness of GSK461364 and provide further evidence that RNAi screens can be effective tools to identify combination target strategies.


Subject(s)
Benzimidazoles/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Lung Neoplasms/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , Thiophenes/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Biomarkers, Pharmacological , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Humans , Microarray Analysis , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Interference , RNA, Small Interfering/pharmacology , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/genetics , Retinoic Acid Receptor alpha , Retinoids/pharmacology , Signal Transduction/genetics , Polo-Like Kinase 1
13.
Clin Exp Metastasis ; 28(8): 899-908, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21953073

ABSTRACT

Few therapeutic strategies exist for the treatment of metastatic tumor cells in the brain because the blood-brain barrier (BBB) limits drug access. Thus the identification of molecular targets and accompanying BBB permeable drugs will significantly benefit brain metastasis patients. Polo-like kinase 1 (Plk1) is an attractive molecular target because it is only expressed in dividing cells and its expression is upregulated in many tumors. Analysis of a publicly available database of human breast cancer metastases revealed Plk1 mRNA expression was significantly increased in brain metastases compared to systemic metastases (P = 0.0018). The selective Plk1 inhibitor, GSK461364A, showed substantial uptake in normal rodent brain. Using a breast cancer brain metastatic xenograft model (231-BR), we tested the efficacy of GSK461364A to prevent brain metastatic colonization. When treatment was started 3 days post-injection, GSK461364A at 50 mg/kg inhibited the development of large brain metastases 62% (P = 0.0001) and prolonged survival by 17%. GSK461364A sensitized tumor cells to radiation induced cell death in vitro. Previously, it was reported that mutations in p53 might render tumor cells more sensitive to Plk1 inhibition; however, p53 mutations are uncommon in breast cancer. In a cohort of 41 primary breast tumors and matched brain metastases, p53 immunostaining was increased in 61% of metastases; 44% of which were associated with primary tumors with low p53. The data suggest that p53 overexpression occurs frequently in brain metastases and may facilitate sensitivity to Plk1 inhibition. These data indicate Plk1 may be a new druggable target for the prevention of breast cancer brain metastases.


Subject(s)
Brain Neoplasms/prevention & control , Breast Neoplasms/prevention & control , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/prevention & control , Bone Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Female , Humans , Immunoenzyme Techniques , Lung Neoplasms/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Radiation, Ionizing , Survival Rate , Thiophenes/pharmacology , Tissue Array Analysis , Tumor Cells, Cultured , Tumor Suppressor Protein p53 , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
14.
Clin Cancer Res ; 17(10): 3420-30, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21459796

ABSTRACT

PURPOSE: GSK461364 is an ATP-competitive inhibitor of polo-like kinase 1 (Plk1). A phase I study of two schedules of intravenous GSK461364 was conducted. EXPERIMENTAL DESIGN: GSK461364 was administered in escalating doses to patients with solid malignancies by two schedules, either on days 1, 8, and 15 of 28-day cycles (schedule A) or on days 1, 2, 8, 9, 15, and 16 of 28-day cycles (schedule B). Assessments included pharmacokinetic and pharmacodynamic profiles, as well as marker expression studies in pretreatment tumor biopsies. RESULTS: Forty patients received GSK461364: 23 patients in schedule A and 17 in schedule B. Dose-limiting toxicities (DLT) in schedule A at 300 mg (2 of 7 patients) and 225 mg (1 of 8 patients) cohorts included grade 4 neutropenia and/or grade 3-4 thrombocytopenia. In schedule B, DLTs of grade 4 pulmonary emboli and grade 4 neutropenia occurred at 7 or more days at 100 mg dose level. Venous thrombotic emboli (VTE) and myelosuppression were the most common grade 3-4, drug-related events. Pharmacokinetic data indicated that AUC (area under the curve) and C(max) (maximum concentration) were proportional across doses, with a half-life of 9 to 13 hours. Pharmacodynamic studies in circulating tumor cells revealed an increase in phosphorylated histone H3 (pHH3) following drug administration. A best response of prolonged stable disease of more than 16 weeks occurred in 6 (15%) patients, including 4 esophageal cancer patients. Those with prolonged stable disease had greater expression of Ki-67, pHH3, and Plk1 in archived tumor biopsies. CONCLUSIONS: The final recommended phase II dose for GSK461364 was 225 mg administered intravenously in schedule A. Because of the high incidence (20%) of VTE, for further clinical evaluation, GSK461364 should involve coadministration of prophylactic anticoagulation.


Subject(s)
Benzimidazoles/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Thiophenes/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Benzimidazoles/metabolism , Benzimidazoles/pharmacokinetics , Binding, Competitive , Cell Cycle Proteins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Progression , Female , Humans , Male , Maximum Tolerated Dose , Middle Aged , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Substrate Specificity , Thiophenes/metabolism , Thiophenes/pharmacokinetics , Polo-Like Kinase 1
15.
Clin Cancer Res ; 16(2): 384-9, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20068088

ABSTRACT

Polo-like kinases (Plk) function in mitosis and maintaining DNA integrity. There are four family members, of which Plk1 represents a target for anticancer therapy. Plk1 is only expressed in dividing cells with peak expression during G2/M. Plk1 functions in multiple steps of mitosis, and is overexpressed in many tumor types. Mitotic arrest and inhibition of proliferation, apoptosis, and tumor growth inhibition have been observed in preclinical studies using small interfering RNAs (siRNA) or small molecules that inhibit Plk1. Preclinical studies also show that Plk1 inhibitors may be active against tumors with RAS mutations and that tumor cells with mutations in TP53 are more sensitive to inhibition of Plk1. Several Plk inhibitors are in phase I or II clinical studies. As expected, hematologic toxicity is the primary dose-limiting toxicity. Some patients have achieved clinical response, although in some studies only at doses above the maximum tolerated dose defined in the study. Further evaluation is necessary to discern the clinical utility of Plk1 inhibitors.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Drug Delivery Systems , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Drug Delivery Systems/methods , Drug Evaluation, Preclinical , Humans , Models, Biological , Protein Kinase Inhibitors/administration & dosage , Substrate Specificity , Polo-Like Kinase 1
16.
Mol Cancer Ther ; 9(7): 2079-89, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20571075

ABSTRACT

Polo-like kinases are a family of serine threonine kinases that are critical regulators of cell cycle progression and DNA damage response. Predictive biomarkers for the Plk1-selective inhibitor GSK461364A were identified by comparing the genomics and genetics of a panel of human cancer cell lines with their response to a drug washout followed by an outgrowth assay. In this assay, cell lines that have lost p53 expression or carry mutations in the TP53 gene tended to be more sensitive to GSK461364A. These more sensitive cell lines also had increased levels of chromosome instability, a characteristic associated with loss of p53 function. Further mechanistic studies showed that p53 wild-type (WT) and not mutant cells can activate a postmitotic tetraploidy checkpoint and arrest at pseudo-G(1) state after GSK461364A treatment. RNA silencing of WT p53 increased the antiproliferative activity of GSK461364A. Furthermore, silencing of p53 or p21/CDKN1A weakened the tetraploidy checkpoint in cells that survived mitotic arrest and mitotic slippage. As many cancer therapies tend to be more effective in p53 WT patients, the higher sensitivity of p53-deficient tumors toward GSK461364A could potentially offer an opportunity to treat tumors that are refractory to other chemotherapies as well as early line therapy for these genotypes.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Chromosomal Instability , Mutation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Thiophenes/pharmacology , Tumor Suppressor Protein p53/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Humans , Immunoblotting , Inhibitory Concentration 50 , Mitosis/drug effects , Mitosis/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Polyploidy , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tumor Suppressor Protein p53/metabolism , Polo-Like Kinase 1
17.
Cancer Res ; 70(9): 3677-86, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20406975

ABSTRACT

Preclinical cellular response profiling of tumor models has become a cornerstone in the development of novel cancer therapeutics. As efforts to predict clinical efficacy using cohorts of in vitro tumor models have been successful, expansive panels of tumor-derived cell lines can recapitulate an "all comers" efficacy trial, thereby identifying which tumors are most likely to benefit from treatment. The response profile of a therapy is most often studied in isolation; however, drug treatment effect patterns in tumor models across a diverse panel of compounds can help determine the value of unique molecular target classes in specific tumor cohorts. To this end, a panel of 19 compounds was evaluated against a diverse group of cancer cell lines (n = 311). The primary oncogenic targets were a key determinant of concentration-dependent proliferation response, as a total of five of six, four of four, and five of five phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, insulin-like growth factor-I receptor (IGF-IR), and mitotic inhibitors, respectively, clustered with others of that common target class. In addition, molecular target class was correlated with increased responsiveness in certain histologies. A cohort of PI3K/AKT/mTOR inhibitors was more efficacious in breast cancers compared with other tumor types, whereas IGF-IR inhibitors more selectively inhibited growth in colon cancer lines. Finally, specific phenotypes play an important role in cellular response profiles. For example, luminal breast cancer cells (nine of nine; 100%) segregated from basal cells (six of seven; 86%). The convergence of a common cellular response profile for different molecules targeting the same oncogenic pathway substantiates a rational clinical path for patient populations most likely to benefit from treatment. Cancer Res; 70(9); 3677-86. (c)2010 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Neoplasms/drug therapy , Neoplasms/genetics , Cell Line, Tumor , Humans , Predictive Value of Tests
18.
Proc Natl Acad Sci U S A ; 102(44): 15901-6, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16247015

ABSTRACT

Metastasis of primary tumors leads to a very poor prognosis for patients suffering from cancer. Although it is well established that not every tumor will eventually metastasize, it is less clear whether primary tumors acquire genetic alterations in a stochastic process at a late stage, which make them invasive, or whether genetic alterations acquired early in the process of tumor development drive primary tumor growth and determine whether this tumor is going to be metastatic. To address this issue, we tested genes identified in a large-scale comparative genomic hybridization analysis of primary tumor for their ability to confer metastatic properties on a cancer cell. We identified amplification of the ACK1 gene in primary tumors, which correlates with poor prognosis. We further show that overexpression of Ack1 in cancer cell lines can increase the invasive phenotype of these cells both in vitro and in vivo and leads to increased mortality in a mouse model of metastasis. Biochemical studies show that Ack1 is involved in extracellular matrix-induced integrin signaling, ultimately activating signaling processes like the activation of the small GTPase Rac. Taken together, this study supports a theory from Bernards and Weinberg [Bernards, R. & Weinberg, R. A. (2002) Nature 418, 823], which postulates that the tendency to metastasize is largely predetermined.


Subject(s)
Gene Amplification , Neoplasm Metastasis/genetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/physiology , Animals , Cell Line, Tumor , Crk-Associated Substrate Protein/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha3beta1/metabolism , Lung Neoplasms/secondary , Mice , Neoplasm Transplantation , Prognosis , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Transplantation, Heterologous , Tumor Cells, Cultured , rac GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL