Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cell ; 158(5): 1000-1010, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171403

ABSTRACT

Specific members of the intestinal microbiota dramatically affect inflammatory bowel disease (IBD) in mice. In humans, however, identifying bacteria that preferentially affect disease susceptibility and severity remains a major challenge. Here, we used flow-cytometry-based bacterial cell sorting and 16S sequencing to characterize taxa-specific coating of the intestinal microbiota with immunoglobulin A (IgA-SEQ) and show that high IgA coating uniquely identifies colitogenic intestinal bacteria in a mouse model of microbiota-driven colitis. We then used IgA-SEQ and extensive anaerobic culturing of fecal bacteria from IBD patients to create personalized disease-associated gut microbiota culture collections with predefined levels of IgA coating. Using these collections, we found that intestinal bacteria selected on the basis of high coating with IgA conferred dramatic susceptibility to colitis in germ-free mice. Thus, our studies suggest that IgA coating identifies inflammatory commensals that preferentially drive intestinal disease. Targeted elimination of such bacteria may reduce, reverse, or even prevent disease development.


Subject(s)
Colitis, Ulcerative/immunology , Crohn Disease/immunology , Immunoglobulin A/immunology , Microbiota , Animals , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Crohn Disease/microbiology , Crohn Disease/pathology , DNA, Bacterial/analysis , Dysbiosis/immunology , Dysbiosis/microbiology , Humans , Inflammasomes/immunology , Inflammation/immunology , Inflammation/microbiology , Intestines/immunology , Intestines/microbiology , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/analysis , Specific Pathogen-Free Organisms
2.
Mol Biol Evol ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39238368

ABSTRACT

Insect herbivores frequently co-speciate with symbionts that enable them to survive on nutritionally unbalanced diets. While ancient symbiont gain and loss events have been pivotal for insect diversification and feeding niche specialization, evidence of recent events is scarce. We examine the recent loss of nutritional symbionts (in as little as 1 MY) in sap-feeding Pariaconus, an endemic Hawaiian insect genus that has undergone adaptive radiation, evolving various galling and free-living ecologies on a single host plant species, Metrosideros polymorpha within the last ∼5MY. Using 16S rRNA sequencing we investigated the bacterial microbiomes of 19 Pariaconus species and identified distinct symbiont profiles associated with specific host-plant ecologies. Phylogenetic analyses and metagenomic reconstructions revealed significant differences in microbial diversity and functions among psyllids with different host-plant ecologies. Within a few MY, Pariaconus species convergently evolved the closed-gall habit twice. This shift to enclosed galls coincided with loss of the Morganella-like symbiont that provides the essential amino acid arginine to free-living and open-gall sister species. After the Pariaconus lineage left Kauai and colonized younger islands, both open- and closed-gall species lost the Dickeya-like symbiont. This symbiont is crucial for synthesizing essential amino acids (phenylalanine, tyrosine, lysine) as well as B-vitamins in free-living species. The recurrent loss of these symbionts in galling species reinforces evidence that galls are nutrient sinks and combined with the rapidity of the evolutionary timeline, highlights the dynamic role of insect-symbiont relationships during the diversification of feeding ecologies. We propose new Candidatus names for the novel Morganella-like and Dickeya-like symbionts.

3.
Proc Natl Acad Sci U S A ; 119(11): e2121180119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35254905

ABSTRACT

SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.


Subject(s)
Cholera/microbiology , Gastrointestinal Microbiome , Host-Pathogen Interactions , Microbial Interactions , Mutagens/metabolism , Vibrio cholerae/physiology , Animals , Antibiosis , Cholera/mortality , DNA Damage , Disease Models, Animal , Escherichia coli/physiology , Humans , Mice , Peptides/metabolism , Peptides/pharmacology , Polyketides/metabolism , Polyketides/pharmacology , Prognosis , Reactive Oxygen Species , Vibrio cholerae/drug effects
4.
Mol Biol Evol ; 38(11): 4778-4791, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34213555

ABSTRACT

Historically it has been difficult to study the evolution of bacterial small RNAs (sRNAs) across distantly related species. For example, identifying homologs of sRNAs is often difficult in genomes that have undergone multiple structural rearrangements. Also, some types of regulatory sRNAs evolve at rapid rates. The high degree of genomic synteny among divergent host-restricted bacterial lineages, including intracellular symbionts, is conducive to sRNA maintenance and homolog identification. In turn, symbiont genomes can provide us with novel insights into sRNA evolution. Here, we examine the sRNA expression profile of the obligate symbiont of psyllids, Carsonella ruddii, which has one of the smallest cellular genomes described. Using RNA-seq, we identified 36 and 32 antisense sRNAs (asRNAs) expressed by Carsonella from the psyllids Bactericera cockerelli (Carsonella-BC) and Diaphorina citri (Carsonella-DC), respectively. The majority of these asRNAs were associated with genes that are involved in essential amino acid biosynthetic pathways. Eleven of the asRNAs were conserved in both Carsonella lineages and the majority were maintained by selection. Notably, five of the corresponding coding sequences are also the targets of conserved asRNAs in a distantly related insect symbiont, Buchnera. We detected differential expression of two asRNAs for genes involved in arginine and leucine biosynthesis occurring between two distinct Carsonella-BC life stages. Using asRNAs identified in Carsonella, Buchnera, and Profftella which are all endosymbionts, and Escherichia coli, we determined that regions upstream of these asRNAs encode unique conserved patterns of AT/GC richness, GC skew, and sequence motifs which may be involved in asRNA regulation.


Subject(s)
Buchnera , Hemiptera , Animals , Buchnera/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Hemiptera/genetics , RNA, Bacterial/genetics , Selection, Genetic , Symbiosis/genetics
5.
J Bacteriol ; 203(21): e0021721, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34251866

ABSTRACT

Human gut microbiome composition is constantly changing, and diet is a major driver of these changes. Gut microbial species that persist in mammalian hosts for long periods of time must possess mechanisms for sensing and adapting to nutrient shifts to avoid being outcompeted. Global regulatory mechanisms mediated by RNA-binding proteins (RBPs) that govern responses to nutrient shifts have been characterized in Proteobacteria and Firmicutes but remain undiscovered in the Bacteroidetes. Here, we report the identification of RBPs that are broadly distributed across the Bacteroidetes, with many genomes encoding multiple copies. Genes encoding these RBPs are highly expressed in many Bacteroides species. A purified RBP, RbpB, from Bacteroides thetaiotaomicron binds to single-stranded RNA in vitro with an affinity similar to other characterized regulatory RBPs. B. thetaiotaomicron mutants lacking RBPs show dramatic shifts in expression of polysaccharide utilization and capsular polysaccharide loci, suggesting that these RBPs may act as global regulators of polysaccharide metabolism. A B. thetaiotaomicron ΔrbpB mutant shows a growth defect on dietary sugars belonging to the raffinose family of oligosaccharides (RFOs). The ΔrbpB mutant had reduced expression of BT1871, encoding a predicted RFO-degrading melibiase, compared to the wild-type strain. Mutation of BT1871 confirmed that the enzyme it encodes is essential for growth on melibiose and promotes growth on the RFOs raffinose and stachyose. Our data reveal that RbpB is required for optimal expression of BT1871 and other polysaccharide-related genes, suggesting that we have identified an important new family of global regulatory proteins in the Bacteroidetes. IMPORTANCE The human colon houses hundreds of bacterial species, including many belonging to the genus Bacteroides, that aid in breaking down our food to keep us healthy. Bacteroides have many genes responsible for breaking down different dietary carbohydrates, and complex regulatory mechanisms ensure that specific genes are only expressed when the right carbohydrates are available. In this study, we discovered that Bacteroides use a family of RNA-binding proteins as global regulators to coordinate expression of carbohydrate utilization genes. The ability to turn different carbohydrate utilization genes on and off in response to changing nutrient conditions is critical for Bacteroides to live successfully in the gut, and thus the new regulators we have identified may be important for life in the host.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/metabolism , Gene Expression Regulation, Bacterial/physiology , Polysaccharides, Bacterial/metabolism , RNA-Binding Proteins/metabolism , Bacterial Proteins/genetics , Bacteroides thetaiotaomicron/genetics , Humans , RNA-Binding Proteins/genetics
6.
Infect Immun ; 86(1)2018 01.
Article in English | MEDLINE | ID: mdl-29084897

ABSTRACT

During infection, pathogens must obtain all inorganic nutrients, such as phosphate, from the host. Despite the essentiality of phosphate for all forms of life, how Staphylococcus aureus obtains this nutrient during infection is unknown. Differing from Escherichia coli, the paradigm for bacterial phosphate acquisition, which has two inorganic phosphate (Pi) importers, genomic analysis suggested that S. aureus possesses three distinct Pi transporters: PstSCAB, PitA, and NptA. While pitA and nptA are expressed in phosphate-replete media, expression of all three transporters is induced by phosphate limitation. The loss of a single transporter did not affect S. aureus However, disruption of any two systems significantly reduced Pi accumulation and growth in divergent environments. These findings indicate that PstSCAB, PitA, and NptA have overlapping but nonredundant functions, thus expanding the environments in which S. aureus can successfully obtain Pi Consistent with this idea, in a systemic mouse model of disease, loss of any one transporter did not decrease staphylococcal virulence. However, loss of NptA in conjunction with either PstSCAB or PitA significantly reduced the ability of S. aureus to cause infection. These observations suggest that Pi acquisition via NptA is particularly important for the pathogenesis of S. aureus While our analysis suggests that NptA homologs are widely distributed among bacteria, closely related less pathogenic staphylococcal species do not possess this importer. Altogether, these observations indicate that Pi uptake by S. aureus differs from established models and that acquisition of a third transporter enhances the ability of the bacterium to cause infection.


Subject(s)
Bacterial Proteins/genetics , Membrane Transport Proteins/genetics , Phosphate Transport Proteins/genetics , Phosphates/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Animals , Bacterial Proteins/metabolism , Escherichia coli/genetics , Female , Gene Expression Regulation, Bacterial/genetics , Mice , Mice, Inbred C57BL , Staphylococcus aureus/metabolism
7.
Annu Rev Microbiol ; 67: 459-75, 2013.
Article in English | MEDLINE | ID: mdl-24024637

ABSTRACT

The complex and intimate relationship between humans and their gut microbial communities is becoming less obscure, due in part to large-scale gut microbial genome-sequencing projects and culture-independent surveys of the composition and gene content of these communities. These studies build upon, and are complemented by, experimental efforts to define underlying mechanisms of host-microbe interactions in simplified model systems. This review highlights the intersection of these approaches. Experimental studies now leverage the advances in high-throughput DNA sequencing that have driven the explosion of microbial genome and community profiling projects, and the loss-of-function and gain-of-function strategies long employed in model organisms are now being extended to microbial genes, species, and communities from the human gut. These developments promise to deepen our understanding of human gut host-microbiota relationships and are readily applicable to other host-associated and free-living microbial communities.


Subject(s)
Bacteria/genetics , Gastrointestinal Tract/microbiology , Metagenomics , Microbiota , Bacteria/isolation & purification , Bacteria/metabolism , Humans , Metagenome , Metagenomics/methods
8.
Proc Natl Acad Sci U S A ; 109(32): 13034-9, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22826227

ABSTRACT

The gastrointestinal tract harbors large and diverse populations of bacteria that vary among individuals and within individuals over time. Numerous internal and external factors can influence the contents of these microbial communities, including diet, geography, physiology, and the extent of contact among hosts. To investigate the contributions of such factors to the variation and changes in gut microbial communities, we analyzed the distal gut microbiota of individual chimpanzees from two communities in Gombe National Park, Tanzania. These samples, which were derived from 35 chimpanzees, many of whom have been monitored for multiple years, provide an unusually comprehensive longitudinal depth for individuals of known genetic relationships. Although the composition of the great-ape microbiota has been shown to codiversify with host species, indicating that host genetics and phylogeny have played a major role in its differentiation over evolutionary timescales, the geneaological relationships of individual chimpanzees did not coincide with the similarity in their gut microbial communities. However, the inhabitants from adjacent chimpanzee communities could be distinguished based on the contents of their gut microbiota. Despite the broad similarity of community members, as would be expected from shared diet or interactions, long-term immigrants to a community often harbored the most distinctive gut microbiota, suggesting that individuals retain hallmarks of their previous gut microbial communities for extended periods. This pattern was reinforced in several chimpanzees sampled over long temporal scales, in which the major constituents of the gut microbiota were maintained for nearly a decade.


Subject(s)
Biological Evolution , Gastrointestinal Tract/microbiology , Genetic Variation , Pan troglodytes/microbiology , Animals , DNA Primers/genetics , Feces/microbiology , Pedigree , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity , Statistics, Nonparametric , Tanzania
9.
PLoS Genet ; 7(9): e1002252, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21912528

ABSTRACT

Analyses of genome reduction in obligate bacterial symbionts typically focus on the removal and retention of protein-coding regions, which are subject to ongoing inactivation and deletion. However, these same forces operate on intergenic spacers (IGSs) and affect their contents, maintenance, and rates of evolution. IGSs comprise both non-coding, non-functional regions, including decaying pseudogenes at varying stages of recognizability, as well as functional elements, such as genes for sRNAs and regulatory control elements. The genomes of Buchnera and other small genome symbionts display biased nucleotide compositions and high rates of sequence evolution and contain few recognizable regulatory elements. However, IGS lengths are highly correlated across divergent Buchnera genomes, suggesting the presence of functional elements. To identify functional regions within the IGSs, we sequenced two Buchnera genomes (from aphid species Uroleucon ambrosiae and Acyrthosiphon kondoi) and applied a phylogenetic footprinting approach to alignments of orthologous IGSs from a total of eight Buchnera genomes corresponding to six aphid species. Inclusion of these new genomes allowed comparative analyses at intermediate levels of divergence, enabling the detection of both conserved elements and previously unrecognized pseudogenes. Analyses of these genomes revealed that 232 of 336 IGS alignments over 50 nucleotides in length displayed substantial sequence conservation. Conserved alignment blocks within these IGSs encompassed 88 Shine-Dalgarno sequences, 55 transcriptional terminators, 5 Sigma-32 binding sites, and 12 novel small RNAs. Although pseudogene formation, and thus IGS formation, are ongoing processes in these genomes, a large proportion of intergenic spacers contain functional sequences.


Subject(s)
Buchnera/genetics , DNA, Intergenic/genetics , Evolution, Molecular , Genome, Bacterial/genetics , Animals , Aphids/microbiology , Base Sequence , Conserved Sequence/genetics , Molecular Sequence Data , Phylogeny , Pseudogenes/genetics , RNA, Small Untranslated/genetics , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA , Symbiosis
10.
Front Microbiol ; 15: 1241582, 2024.
Article in English | MEDLINE | ID: mdl-38601936

ABSTRACT

The horizontal transfer of mobile genetic elements (MGEs) is an essential process determining the functional and genomic diversity of bacterial populations. MGEs facilitate the exchange of fitness determinant genes like antibiotic resistance and virulence factors. Various computational methods exist to identify potential MGEs, but confirming their ability to transfer requires additional experimental approaches. Here, we apply a transposon (Tn) mutagenesis technique for confirming mobilization without the need for targeted mutations. Using this method, we identified two MGEs, including a previously known conjugative transposon (CTn) called BoCTn found in Bacteroides ovatus and a novel CTn, PvCTn, identified in Phocaeicola vulgatus. In addition, Tn mutagenesis and subsequent genetic deletion enabled our characterization of a helix-turn-helix motif gene, BVU3433 which negatively regulates the conjugation efficiency of PvCTn in vitro. Furthermore, our transcriptomics data revealed that BVU3433 plays a crucial role in the repression of PvCTn genes, including genes involved in forming complete conjugation machinery [Type IV Secretion System (T4SS)]. Finally, analysis of individual strain genomes and community metagenomes identified the widespread prevalence of PvCTn-like elements with putative BVU3433 homologs among human gut-associated bacteria. In summary, this Tn mutagenesis mobilization method (TMMM) enables observation of transfer events in vitro and can ultimately be applied in vivo to identify a broader diversity of functional MGEs that may underly the transfer of important fitness determinants.

11.
bioRxiv ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38895307

ABSTRACT

Bacteroides species are successful colonizers of the human gut and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in Polysaccharide Utilization Loci (PULs). While recent work has uncovered the PULs required for use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-ß-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in subset and show that representative strains of species containing a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide.

12.
Mol Ecol Resour ; 23(1): 233-252, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35925827

ABSTRACT

Lineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B. cockerelli genome has experienced significantly more gene expansion events compared to other Hemipteran representatives with fully sequenced genomes. We also reveal that B. cockerelli's genome is the largest psyllid genome (567 Mb) sequenced to date and is ~15% larger than the other two psyllid species genomes sequenced (Pachypsylla venusta and Diaphorina citri). Structurally, B. cockerelli appears to have an additional chromosome compared to the distantly related psyllid species P. venusta due to a previous chromosomal fission or fusion event. The increase in genome size and dynamic nature of the B. cockerelli genome may largely be contributed to the widespread expansion of type I and II repeat elements that are rampant across all of B. cockerelli's. chromosomes. These repeat elements are distributed near equally in both euchromatic and heterochromatic regions. Furthermore, significant gene family expansions and gene duplications were uncovered for genes that are expected to be important in its adaptation to insect-plant and microbe interactions, which include transcription factors, proteases, odorant receptors, and horizontally transferred genes that are involved in the nutritional symbioses with their long-term nutritional endosymbiont Carsonella.


Subject(s)
Hemiptera , Animals , Hemiptera/genetics , Symbiosis/genetics , Genome , Bacteria/genetics , Chromosomes
13.
Proc Natl Acad Sci U S A ; 106(22): 9063-8, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19451630

ABSTRACT

Eukaryotes engage in a multitude of beneficial and deleterious interactions with bacteria. Hamiltonella defensa, an endosymbiont of aphids and other sap-feeding insects, protects its aphid host from attack by parasitoid wasps. Thus H. defensa is only conditionally beneficial to hosts, unlike ancient nutritional symbionts, such as Buchnera, that are obligate. Similar to pathogenic bacteria, H. defensa is able to invade naive hosts and circumvent host immune responses. We have sequenced the genome of H. defensa to identify possible mechanisms that underlie its persistence in healthy aphids and protection from parasitoids. The 2.1-Mb genome has undergone significant reduction in size relative to its closest free-living relatives, which include Yersinia and Serratia species (4.6-5.4 Mb). Auxotrophic for 8 of the 10 essential amino acids, H. defensa is reliant upon the essential amino acids produced by Buchnera. Despite these losses, the H. defensa genome retains more genes and pathways for a variety of cell structures and processes than do obligate symbionts, such as Buchnera. Furthermore, putative pathogenicity loci, encoding type-3 secretion systems, and toxin homologs, which are absent in obligate symbionts, are abundant in the H. defensa genome, as are regulatory genes that likely control the timing of their expression. The genome is also littered with mobile DNA, including phage-derived genes, plasmids, and insertion-sequence elements, highlighting its dynamic nature and the continued role horizontal gene transfer plays in shaping it.


Subject(s)
Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Evolution, Molecular , Genome, Bacterial , Base Sequence , Enterobacteriaceae/pathogenicity , Genomics , Molecular Sequence Data , Phylogeny , Proteome/genetics , Symbiosis
14.
Mol Biol Evol ; 27(4): 833-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19955479

ABSTRACT

Mutational hotspots offer significant sources of genetic variability upon which selection can act. However, with a few notable exceptions, we know little about the dynamics and fitness consequences of mutations in these regions. Here, we explore evolutionary forces shaping homopolymeric tracts that are especially vulnerable to slippage errors during replication and transcription. Such tracts are typically eliminated by selection from most bacterial sequences, yet persist in genomes of endosymbionts with small effective population sizes (N(e)) and biased base compositions. Focusing on Blochmannia, a bacterial endosymbiont of ants, we track the divergence of genes that contain frameshift mutations within long (9-11 bp) polyA or polyT tracts. Earlier experimental work documented that transcriptional slippage restores the reading frame in a fraction of messenger RNA molecules and thereby rescues the function of frameshifted genes. In this study, we demonstrate a surprising persistence of these frameshifts and associated tracts for millions of years. Across the genome of this ant mutualist, rates of indel mutation within homopolymeric tracts far exceed the synonymous mutation rate, indicating that long-term conservation of frameshifts within these tracts is inconsistent with neutrality. In addition, the homopolymeric tracts themselves are more conserved than expected by chance, given extensive neutral substitutions that occur elsewhere in the genes sampled. These data suggest an unexpected role for slippage-prone DNA tracts and highlight a new mechanism for their persistence. That is, when such tracts contain a frameshift, transcriptional slippage plays a critical role in rescuing gene function. In such cases, selection will purge nucleotide changes interrupting the slippery tract so that otherwise volatile sequences become frozen in evolutionary time. Although the advantage of the frameshift itself is less clear, it may offer a mechanism to lower effective gene expression by reducing but not eliminating transcripts that encode full-length proteins.


Subject(s)
Enterobacteriaceae/genetics , Frameshift Mutation , Base Sequence , INDEL Mutation , Poly A/genetics , Poly T/genetics , Selection, Genetic , Transcription, Genetic
15.
Curr Microbiol ; 62(5): 1565-72, 2011 May.
Article in English | MEDLINE | ID: mdl-21336565

ABSTRACT

Eukaryotes engage in intimate interactions with microbes that range in age and type of association. Although many conspicuous examples of ancient insect associates are studied (e.g., Buchnera aphidicola), fewer examples of younger associations are known. Here, we further characterize a recently evolved bacterial endosymbiont of the leafhopper Euscelidius variegatus (Hemiptera, Cicadellidae), called BEV. We found that BEV, continuously maintained in E. variegatus hosts at UC Berkeley since 1984, is vertically transmitted with high fidelity. Unlike many vertically transmitted, ancient endosymbioses, the BEV-E. variegatus association is not obligate for either partner, and BEV can be cultivated axenically. Sufficient BEV colonies were grown and harvested to estimate its genome size and provide a partial survey of the genome sequence. The BEV chromosome is about 3.8 Mbp, and there is evidence for an extrachromosomal element roughly 53 kb in size (e.g., prophage or plasmid). We sequenced 438 kb of unique short-insert clones, representing about 12% of the BEV genome. Nearly half of the gene fragments were similar to mobile DNA, including 15 distinct types of insertion sequences (IS). Analyses revealed that BEV not only shares virulence genes with plant pathogens, but also is closely related to the plant pathogenic genera Dickeya, Pectobacterium, and Brenneria. However, the slightly reduced genome size, abundance of mobile DNA, fastidious growth in culture, and efficient vertical transmission suggest that symbiosis with E. variegatus has had a significant impact on genome evolution in BEV.


Subject(s)
Bacteria/isolation & purification , Hemiptera/microbiology , Hemiptera/physiology , Symbiosis , Animals , Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena , Evolution, Molecular , Genome, Bacterial , Molecular Sequence Data , Phylogeny
16.
Annu Rev Entomol ; 55: 247-66, 2010.
Article in English | MEDLINE | ID: mdl-19728837

ABSTRACT

Aphids engage in symbiotic associations with a diverse assemblage of heritable bacteria. In addition to their obligate nutrient-provisioning symbiont, Buchnera aphidicola, aphids may also carry one or more facultative symbionts. Unlike obligate symbionts, facultative symbionts are not generally required for survival or reproduction and can invade novel hosts, based on both phylogenetic analyses and transfection experiments. Facultative symbionts are mutualistic in the context of various ecological interactions. Experiments on pea aphids (Acyrthosiphon pisum) have demonstrated that facultative symbionts protect against entomopathogenic fungi and parasitoid wasps, ameliorate the detrimental effects of heat, and influence host plant suitability. The protective symbiont, Hamiltonella defensa, has a dynamic genome, exhibiting evidence of recombination, phage-mediated gene uptake, and horizontal gene transfer and containing virulence and toxin-encoding genes. Although transmitted maternally with high fidelity, facultative symbionts occasionally move horizontally within and between species, resulting in the instantaneous acquisition of ecologically important traits, such as parasitoid defense.


Subject(s)
Aphids/microbiology , Gene Transfer, Horizontal , Phenotype , Symbiosis , Animals , Aphids/genetics
17.
Cell Rep ; 37(13): 110164, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34965410

ABSTRACT

The functional and genomic diversity of the human gut microbiome is shaped by horizontal transfer of mobile genetic elements (MGEs). Characterized MGEs can encode genes beneficial for their host's self-defense (e.g., antibiotic resistance) or ability to compete for essential or limited resources (e.g., vitamins). Vitamin B12 and related compounds (corrinoids) are critical nutrients that enable colonization by members of the common gut microbe phylum, the Bacteroidetes. Herein, we identify a distinct class of MGEs in the Bacteroidetes responsible for the mobilization and exchange of the genes required for transport of corrinoids, a group of cyclic tetrapyrrole cofactors including vitamin B12 (btuGBFCD). This class includes two distinct groups of conjugative transposons (CTns) and one group of phage. Conjugative transfer and vitamin B12 transport activity of two of the CTns were confirmed in vitro and in vivo, demonstrating the important role MGEs play in distribution of corrinoid transporters in the Bacteroidetes.


Subject(s)
Bacterial Proteins/metabolism , Bacteroidetes/metabolism , Corrinoids/metabolism , Gastrointestinal Microbiome , Interspersed Repetitive Sequences , Membrane Transport Proteins/metabolism , Vitamin B 12/metabolism , Animals , Bacterial Proteins/genetics , Bacteroidetes/growth & development , Female , Humans , Male , Mice , Mice, Inbred C57BL , Vitamin B Complex/metabolism
18.
Environ Microbiol ; 12(8): 2060-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-21966902

ABSTRACT

Aphids are sap-feeding insects that host a range of bacterial endosymbionts including the obligate, nutritional mutualist Buchnera plus several bacteria that are not required for host survival. Among the latter, 'Candidatus Regiella insecticola' and 'Candidatus Hamiltonella defensa' are found in pea aphids and other hosts and have been shown to protect aphids from natural enemies. We have sequenced almost the entire genome of R. insecticola (2.07 Mbp) and compared it with the recently published genome of H. defensa (2.11 Mbp). Despite being sister species the two genomes are highly rearranged and the genomes only have ∼55% of genes in common. The functions encoded by the shared genes imply that the bacteria have similar metabolic capabilities, including only two essential amino acid biosynthetic pathways and active uptake mechanisms for the remaining eight, and similar capacities for host cell toxicity and invasion (type 3 secretion systems and RTX toxins). These observations, combined with high sequence divergence of orthologues, strongly suggest an ancient divergence after establishment of a symbiotic lifestyle. The divergence in gene sets and in genome architecture implies a history of rampant recombination and gene inactivation and the ongoing integration of mobile DNA (insertion sequence elements, prophage and plasmids).


Subject(s)
Aphids/microbiology , Enterobacteriaceae/genetics , Evolution, Molecular , Genome, Bacterial , Symbiosis , Animals , Comparative Genomic Hybridization , DNA, Bacterial/genetics , Enterobacteriaceae/physiology , Genomic Islands , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
19.
Appl Environ Microbiol ; 76(12): 4076-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20418442

ABSTRACT

Insect endosymbiont genomes reflect massive gene loss. Two Blattabacterium genomes display colinearity and similar gene contents, despite high orthologous gene divergence, reflecting over 140 million years of independent evolution in separate cockroach lineages. We speculate that distant homologs may replace the functions of some eliminated genes through broadened substrate specificity.


Subject(s)
Bacteroidetes/physiology , Chromosomal Instability , Chromosomes, Bacterial , Cockroaches/microbiology , Gene Deletion , Symbiosis , Animals , Bacteroidetes/genetics , Evolution, Molecular , Phylogeny , Synteny
20.
Cell Rep ; 32(11): 108142, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937127

ABSTRACT

Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phage-bacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.


Subject(s)
Bacteriophages/physiology , Bacteroides/genetics , Bacteroides/virology , Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/genetics , Host-Pathogen Interactions/genetics , Transcriptome/genetics , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Genome, Viral , Humans , Lysogeny , Mice, Inbred C57BL , Phylogeny , Promoter Regions, Genetic/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL