Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(1): 105-119, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36493768

ABSTRACT

Adult-onset cerebellar ataxias are a group of neurodegenerative conditions that challenge both genetic discovery and molecular diagnosis. In this study, we identified an intronic (GAA) repeat expansion in fibroblast growth factor 14 (FGF14). Genetic analysis of 95 Australian individuals with adult-onset ataxia identified four (4.2%) with (GAA)>300 and a further nine individuals with (GAA)>250. PCR and long-read sequence analysis revealed these were pure (GAA) repeats. In comparison, no control subjects had (GAA)>300 and only 2/311 control individuals (0.6%) had a pure (GAA)>250. In a German validation cohort, 9/104 (8.7%) of affected individuals had (GAA)>335 and a further six had (GAA)>250, whereas 10/190 (5.3%) control subjects had (GAA)>250 but none were (GAA)>335. The combined data suggest (GAA)>335 are disease causing and fully penetrant (p = 6.0 × 10-8, OR = 72 [95% CI = 4.3-1,227]), while (GAA)>250 is likely pathogenic with reduced penetrance. Affected individuals had an adult-onset, slowly progressive cerebellar ataxia with variable features including vestibular impairment, hyper-reflexia, and autonomic dysfunction. A negative correlation between age at onset and repeat length was observed (R2 = 0.44, p = 0.00045, slope = -0.12) and identification of a shared haplotype in a minority of individuals suggests that the expansion can be inherited or generated de novo during meiotic division. This study demonstrates the power of genome sequencing and advanced bioinformatic tools to identify novel repeat expansions via model-free, genome-wide analysis and identifies SCA50/ATX-FGF14 as a frequent cause of adult-onset ataxia.


Subject(s)
Cerebellar Ataxia , Fibroblast Growth Factors , Friedreich Ataxia , Trinucleotide Repeat Expansion , Adult , Humans , Ataxia/genetics , Australia , Cerebellar Ataxia/genetics , Friedreich Ataxia/genetics , Trinucleotide Repeat Expansion/genetics
2.
Mov Disord ; 39(2): 370-379, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37927246

ABSTRACT

BACKGROUND: The neurological phenotype of Friedreich ataxia (FRDA) is characterized by neurodegeneration and neuroinflammation in the cerebellum and brainstem. Novel neuroimaging approaches quantifying brain free-water using diffusion magnetic resonance imaging (dMRI) are potentially more sensitive to these processes than standard imaging markers. OBJECTIVES: To quantify the extent of free-water and microstructural change in FRDA-relevant brain regions using neurite orientation dispersion and density imaging (NODDI), and bitensor diffusion tensor imaging (btDTI). METHOD: Multi-shell dMRI was acquired from 14 individuals with FRDA and 14 controls. Free-water measures from NODDI (FISO) and btDTI (FW) were compared between groups in the cerebellar cortex, dentate nuclei, cerebellar peduncles, and brainstem. The relative sensitivity of the free-water measures to group differences was compared to microstructural measures of NODDI intracellular volume, free-water corrected fractional anisotropy, and conventional uncorrected fractional anisotropy. RESULTS: In individuals with FRDA, FW was elevated in the cerebellar cortex, peduncles (excluding middle), dentate, and brainstem (P < 0.005). FISO was elevated primarily in the cerebellar lobules (P < 0.001). On average, FW effect sizes were larger than all other markers (mean ηρ 2 = 0.43), although microstructural measures also had very large effects in the superior and inferior cerebellar peduncles and brainstem (ηρ 2 > 0.37). Across all regions and metrics, effect sizes were largest in the superior cerebellar peduncles (ηρ 2 > 0.46). CONCLUSIONS: Multi-compartment diffusion measures of free-water and neurite integrity distinguish FRDA from controls with large effects. Free-water magnitude in the brainstem and cerebellum provided the greatest distinction between groups. This study supports further applications of multi-compartment diffusion modeling, and investigations of free-water as a measure of disease expression and progression in FRDA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Friedreich Ataxia , Movement Disorders , White Matter , Humans , Friedreich Ataxia/diagnostic imaging , Friedreich Ataxia/pathology , Diffusion Tensor Imaging/methods , Cerebellum/diagnostic imaging , Cerebellum/pathology , Brain/diagnostic imaging , Brain/pathology , Movement Disorders/pathology , White Matter/diagnostic imaging , Water , Magnetic Resonance Imaging
3.
Mov Disord ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644761

ABSTRACT

BACKGROUND: The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous. METHODS: Quantitative susceptibility mapping data were acquired from 49 people with FRDA and 46 healthy controls. The dentate nuclei were manually segmented and analyzed using three dimensional vertex-based shape modeling and voxel-based assessments to identify regional changes in morphometry and susceptibility, respectively. RESULTS: Individuals with FRDA, relative to healthy controls, showed significant bilateral surface contraction most strongly at the rostral and caudal boundaries of the dentate nuclei. The magnitude of this surface contraction correlated with disease duration, and to a lesser extent, ataxia severity. Significantly greater susceptibility was also evident in the FRDA cohort relative to controls, but was instead localized to bilateral dorsomedial areas, and also correlated with disease duration and ataxia severity. CONCLUSIONS: Changes in the structure of the dentate nuclei in FRDA are not spatially uniform. Atrophy is greatest in areas with high gray matter density, whereas increases in susceptibility-reflecting iron concentration, demyelination, and/or gliosis-predominate in the medial white matter. These findings converge with established histological reports and indicate that regional measures of dentate nucleus substructure are more sensitive measures of disease expression than full-structure averages. Biomarker development and therapeutic strategies that directly target the dentate nuclei, such as gene therapies, may be optimized by targeting these areas of maximal pathology. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Cerebellum ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642239

ABSTRACT

Cerebellar pathology engenders the disturbance of movement that characterizes Friedreich ataxia (FRDA), yet the impact of cerebellar pathology on cognition in FRDA remains unclear. Numerous studies have unequivocally demonstrated the role of the cerebellar pathology in disturbed cognitive, language and affective regulation, referred to as Cerebellar Cognitive Affective Syndrome (CCAS), and quantified by the CCAS-Scale (CCAS-S). The presence of dysarthria in many individuals with ataxia, particularly FRDA, may confound results on some items of the CCAS-S resulting in false-positive scores. This study explored the relationship between performance on the CCAS-S and clinical metrics of disease severity in 57 adults with FRDA. In addition, this study explored the relationship between measures of intelligibility and naturalness of speech and scores on the CCAS-S in a subgroup of 39 individuals with FRDA. We demonstrated a significant relationship between clinical metrics and performance on the CCAS-S. In addition, we confirmed the items that returned the greatest rate of failure were based on Verbal Fluency Tasks, revealing a significant relationship between these items and measures of speech. Measures of speech explained over half of the variance in the CCAS-S score suggesting the role of dysarthria in the performance on the CCAS-S is not clear. Further work is required prior to adopting the CCAS-S as a cognitive screening tool for individuals with FRDA.

5.
Ann Neurol ; 92(1): 122-137, 2022 07.
Article in English | MEDLINE | ID: mdl-35411967

ABSTRACT

OBJECTIVE: Dominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. METHODS: Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data were interrogated in a cohort of 796 ataxia patients of unknown etiology. RESULTS: The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. INTERPRETATION: This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. ANN NEUROL 2022;92:122-137.


Subject(s)
Cerebellar Ataxia , Interferon Type I , Spinocerebellar Ataxias , Ataxia , Australia , Exoribonucleases , France , Humans , Interferon Type I/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
6.
Mov Disord ; 38(2): 313-320, 2023 02.
Article in English | MEDLINE | ID: mdl-36444905

ABSTRACT

BACKGROUND: MOXIe was a two-part study evaluating the safety and efficacy of omaveloxolone in patients with Friedreich's ataxia, a rare, progressive neurological disease with no proven therapy. MOXIe part 2, a randomized double-blind placebo-controlled trial, showed omaveloxolone significantly improved modified Friedreich's Ataxia Rating Scale (mFARS) scores relative to placebo. Patients who completed part 1 or 2 were eligible to receive omaveloxolone in an open-label extension study. OBJECTIVE: The delayed-start study compared mFARS scores at the end of MOXIe part 2 with those at 72 weeks in the open-label extension period (up to 144 weeks) for patients initially randomized to omaveloxolone versus those initially randomized to placebo. METHODS: We performed a noninferiority test to compare the difference between treatment groups (placebo to omaveloxolone versus omaveloxolone to omaveloxolone) using a single mixed model repeated measures (MMRM) model. In addition, slopes of the change in mFARS scores were compared between both groups in the open-label extension. RESULTS: The noninferiority testing demonstrated that the difference in mFARS between omaveloxolone and placebo observed at the end of placebo-controlled MOXIe part 2 (-2.17 ± 1.09 points) was preserved after 72 weeks in the extension (-2.91 ± 1.44 points). In addition, patients previously randomized to omaveloxolone in MOXIe part 2 continued to show no worsening in mFARS relative to their extension baseline through 144 weeks. CONCLUSIONS: These results support the positive results of MOXIe part 2 and indicate a persistent benefit of omaveloxolone treatment on disease course in Friedreich's ataxia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Friedreich Ataxia , Triterpenes , Humans , Friedreich Ataxia/drug therapy , Triterpenes/therapeutic use , Double-Blind Method , Disease Progression
7.
Prenat Diagn ; 43(11): 1416-1424, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37698492

ABSTRACT

BACKGROUND & AIM: Reproductive carrier screening seeks to identify couples at a high risk of having offspring affected by autosomal recessive and X-linked (XL) conditions. The aim of this paper is to provide a comprehensive overview of existing carrier screening panels by examining their gene content and characteristics, identifying the most common genes/conditions included in these panels, and analyzing their listed prices. METHODS: A comprehensive evaluation of existing carrier screening panels was conducted by searching for web-based content, reviewing information brochures, and establishing direct contact with the providers via email or phone. RESULTS: Twenty-two panels and their providers were identified with a cumulative total of 2205 unique genes. The number of genes included in these panels varied from 44 to 2054. Only 15 genes (0.7%) were included in all the panels. The carrier frequency of these 15 common genes and their associated conditions varied greatly, but the conditions associated with the genes are "severe". The price of these 22 panels ranged from $349 to $4320 per couple (USD in 2023). The correlation between the listed price and the number of selected genes among these panels was small and not statistically significant (r = 0.1023, p = 0.6959). CONCLUSION: Considerable discrepancies exist among carrier screening panels. Ongoing research and monitoring are necessary to capture the dynamic nature of the carrier screening landscape, providing up-to-date information for clinical practice and informed decision-making.

8.
Prenat Diagn ; 43(2): 213-225, 2023 02.
Article in English | MEDLINE | ID: mdl-36617980

ABSTRACT

OBJECTIVES: To evaluate the performance of cell-free DNA (cfDNA) screening for common fetal aneuploidies, choice of prenatal procedure, and chromosome conditions identified during pregnancy after low-risk cfDNA screening. METHOD: A single-center prenatal cfDNA screening test was employed to detect trisomies 21, 18, and 13 (T21, T18, T13) and sex chromosome aneuploidies (SCAs). Test performance, choice of prenatal procedure, and cytogenetic results in pregnancies with low-risk cfDNA screening were reviewed. RESULTS: CfDNA screening of 38,289 consecutive samples identified 720 (1.9%) pregnancies at increased risk for aneuploidy. Positive predictive values (PPVs) for high-risk singleton pregnancies were 98.5% (T21), 92.5% (T18) and 55.2% (T13). PPVs for SCAs ranged from 30.6% to 95.2%. Most women elected chorionic villus sampling for prenatal diagnosis of T21, T18 and T13; amniocentesis and/or postnatal testing were commonly chosen for SCAs. Cytogenetic tests from 616 screen-negative pregnancies identified 64 cases (12.7%) with chromosome conditions not detected by cfDNA screening, including triploidy (n = 30) and pathogenic and likely pathogenic copy number variants (n = 34). A further 15 (0.04%) false-negative common aneuploidy results were identified. CONCLUSIONS: CfDNA screening was highly accurate for detecting fetal aneuploidy in this general-risk obstetric population. Fetal ultrasound and prenatal diagnostic testing were important in identifying chromosome conditions in pregnancies screened as low-risk.


Subject(s)
Cell-Free Nucleic Acids , Chromosome Disorders , Pregnancy , Female , Humans , Chromosome Disorders/diagnosis , Prenatal Diagnosis/methods , Aneuploidy , Sex Chromosome Aberrations , Chromosomes , Trisomy/diagnosis
9.
Prenat Diagn ; 43(2): 226-234, 2023 02.
Article in English | MEDLINE | ID: mdl-35929376

ABSTRACT

Prenatal screening for sex chromosome aneuploidies (SCAs) is increasingly available through expanded non-invasive prenatal testing (NIPT). NIPT for SCAs raises complex ethical issues for clinical providers, prospective parents and future children. This paper discusses the ethical issues that arise around NIPT for SCAs and current guidelines and protocols for management. The first section outlines current practice and the limitations of NIPT for SCAs. It then outlines key guidelines before discussing the ethical issues raised by this use of NIPT. We conclude that while screening for SCAs should be made available for people seeking to use NIPT, its implementation requires careful consideration of what, when and how information is provided to users.


Subject(s)
Aneuploidy , Prenatal Diagnosis , Pregnancy , Female , Child , Humans , Prospective Studies , Prenatal Diagnosis/methods , Sex Chromosome Aberrations , Sex Chromosomes
10.
J Med Genet ; 59(8): 748-758, 2022 08.
Article in English | MEDLINE | ID: mdl-34740920

ABSTRACT

BACKGROUND: Clinical exome sequencing typically achieves diagnostic yields of 30%-57.5% in individuals with monogenic rare diseases. Undiagnosed diseases programmes implement strategies to improve diagnostic outcomes for these individuals. AIM: We share the lessons learnt from the first 3 years of the Undiagnosed Diseases Program-Victoria, an Australian programme embedded within a clinical genetics service in the state of Victoria with a focus on paediatric rare diseases. METHODS: We enrolled families who remained without a diagnosis after clinical genomic (panel, exome or genome) sequencing between 2016 and 2018. We used family-based exome sequencing (family ES), family-based genome sequencing (family GS), RNA sequencing (RNA-seq) and high-resolution chromosomal microarray (CMA) with research-based analysis. RESULTS: In 150 families, we achieved a diagnosis or strong candidate in 64 (42.7%) (37 in known genes with a consistent phenotype, 3 in known genes with a novel phenotype and 24 in novel disease genes). Fifty-four diagnoses or strong candidates were made by family ES, six by family GS with RNA-seq, two by high-resolution CMA and two by data reanalysis. CONCLUSION: We share our lessons learnt from the programme. Flexible implementation of multiple strategies allowed for scalability and response to the availability of new technologies. Broad implementation of family ES with research-based analysis showed promising yields post a negative clinical singleton ES. RNA-seq offered multiple benefits in family ES-negative populations. International data sharing strategies were critical in facilitating collaborations to establish novel disease-gene associations. Finally, the integrated approach of a multiskilled, multidisciplinary team was fundamental to having diverse perspectives and strategic decision-making.


Subject(s)
Undiagnosed Diseases , Australia , Exome , Humans , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Exome Sequencing
11.
Arch Phys Med Rehabil ; 104(10): 1646-1651, 2023 10.
Article in English | MEDLINE | ID: mdl-37268274

ABSTRACT

OBJECTIVE: To determine the interrater reliability of the Scale for the Assessment and Rating of Ataxia (SARA), Berg Balance Scale (BBS), and motor domain of the FIM (m-FIM) administered by physiotherapists in individuals with a hereditary cerebellar ataxia (HCA). DESIGN: Participants were assessed by 1 of 4 physiotherapists. Assessments were video-recorded and the remaining 3 physiotherapists scored the scales for each participant. Raters were blinded to each other's scores. SETTING: Assessments were administered at 3 clinical locations in separate states in Australia. PARTICIPANTS: Twenty-one individuals (mean age=47.63 years; SD=18.42; 13 male and 8 female) living in the community with an HCA were recruited (N=21). MAIN OUTCOME MEASURES: Total and single-item scores of the SARA, BBS, and m-FIM were examined. The m-FIM was conducted by interview. RESULTS: Intraclass coefficients (2,1) for the total scores of the m-FIM (0.92; 95% confidence interval [CI], 0.85-0.96), SARA (0.92; 95% CI, 0.86-0.96), and BBS (0.99; 95% CI, 0.98-0.99) indicated excellent interrater reliability. However, there was inconsistent agreement with the individual items, with SARA item 5 (right side) and item 7 (both sides) demonstrating poor interrater reliability and items 1 and 2 demonstrating excellent reliability. CONCLUSIONS: The m-FIM (by interview), SARA, and BBS have excellent interrater reliability for use when assessing individuals with an HCA. Physiotherapists could be considered for administration of the SARA in clinical trials. However, further work is required to improve the agreement of the single-item scores and to examine the other psychometric properties of these scales.


Subject(s)
Cerebellar Ataxia , Humans , Male , Female , Middle Aged , Cerebellar Ataxia/rehabilitation , Reproducibility of Results , Functional Status , Disability Evaluation , Psychometrics , Postural Balance
12.
Am J Bioeth ; 23(3): 3-20, 2023 03.
Article in English | MEDLINE | ID: mdl-34846986

ABSTRACT

The scope of noninvasive prenatal testing (NIPT) could expand in the future to include detailed analysis of the fetal genome. This will allow for the testing for virtually any trait with a genetic contribution, including "non-medical" traits. Here we discuss the potential use of NIPT for these traits. We outline a scenario which highlights possible inconsistencies with ethical decision-making. We then discuss the case against permitting these uses. The objections include practical problems; increasing inequities; increasing the burden of choice; negative impacts on the child, family, and society; and issues with implementation. We then outline the case for permitting the use of NIPT for these traits. These include arguments for reproductive liberty and autonomy; questioning the labeling of traits as "non-medical"; and the principle of procreative beneficence. This summary of the case for and against can serve as a basis for the development of a consistent and coherent ethical framework.


Subject(s)
Genetic Testing , Prenatal Diagnosis , Pregnancy , Female , Child , Humans , Reproduction , Fetus , Dissent and Disputes
13.
J Genet Couns ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37533186

ABSTRACT

Many commercial reproductive genetic carrier screening (RGCS) panels include genes associated with non-syndromic hearing loss (NSHL), however little is known about the general acceptability of their inclusion. Although some couples wish to avoid having a deaf child, there are effective interventions and supports available for deafness, and no consensus on whether it is appropriate to reproductively screen NSHL genes. This study explored views of people with personal experience of deafness regarding carrier screening for genes associated with NSHL. We interviewed 27 participants; 14 who identified as deaf and 13 hearing parents of a deaf child. Thematic analysis was undertaken on transcripts of interviews. The findings reveal the complexity of attitudes within these groups. Some vacillated between the wish to support prospective parents' reproductive autonomy and concerns about potential harms, especially the expression of negative messages about deafness and the potential loss of acceptance in society. While some participants felt carrier screening could help prospective parents to prepare for a deaf child, there was little support for reproductive screening and termination of pregnancy. Participants emphasized the need for accurate information about the lived experience of deafness. The majority felt deafness is not as severe as other conditions included in RGCS, and most do not consider deafness as a disability. People with personal experience of deafness have diverse attitudes towards RGCS for deafness informed by their own identify and experience, and many have concerns about how it should be discussed and implemented in a population wide RGCS program.

14.
Hum Mutat ; 43(1): 16-29, 2022 01.
Article in English | MEDLINE | ID: mdl-34633740

ABSTRACT

Autism spectrum disorders (ASD) are neurodevelopmental disorders with an estimated heritability of >60%. Family-based genetic studies of ASD have generally focused on multiple small kindreds, searching for de novo variants of major effect. We hypothesized that molecular genetic analysis of large multiplex families would enable the identification of variants of milder effects. We studied a large multigenerational family of European ancestry with multiple family members affected with ASD or the broader autism phenotype (BAP). We identified a rare heterozygous variant in the gene encoding 1,4-ɑ-glucan branching enzyme 1 (GBE1) that was present in seven of seven individuals with ASD, nine of ten individuals with the BAP, and none of four tested unaffected individuals. We genotyped a community-acquired cohort of 389 individuals with ASD and identified three additional probands. Cascade analysis demonstrated that the variant was present in 11 of 13 individuals with familial ASD/BAP and neither of the two tested unaffected individuals in these three families, also of European ancestry. The variant was not enriched in the combined UK10K ASD cohorts of European ancestry but heterozygous GBE1 deletion was overrepresented in large ASD cohorts, collectively suggesting an association between GBE1 and ASD.


Subject(s)
1,4-alpha-Glucan Branching Enzyme , Autism Spectrum Disorder , Glycogen Debranching Enzyme System , 1,4-alpha-Glucan Branching Enzyme/genetics , Autism Spectrum Disorder/genetics , Exome , Genetic Predisposition to Disease , Glucans , Glycogen Debranching Enzyme System/genetics , Humans
15.
Am J Hum Genet ; 104(5): 914-924, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982611

ABSTRACT

Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.


Subject(s)
Deafness/congenital , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Genetic Variation , Glypicans/genetics , Lower Extremity Deformities, Congenital/genetics , Lower Extremity Deformities, Congenital/pathology , Adult , Child , Child, Preschool , Deafness/genetics , Deafness/pathology , Female , Humans , Infant , Male , Pedigree , Phenotype , Young Adult
16.
Am J Hum Genet ; 105(1): 151-165, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31230722

ABSTRACT

Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.


Subject(s)
Cerebellar Ataxia/etiology , Computational Biology/methods , Introns , Microsatellite Repeats , Polyneuropathies/etiology , Replication Protein C/genetics , Sensation Disorders/etiology , Vestibular Diseases/etiology , Algorithms , Cerebellar Ataxia/pathology , Cohort Studies , Family , Female , Genomics , Humans , Male , Middle Aged , Polyneuropathies/pathology , Sensation Disorders/pathology , Syndrome , Vestibular Diseases/pathology , Whole Genome Sequencing
17.
Genet Med ; 24(9): 1803-1813, 2022 09.
Article in English | MEDLINE | ID: mdl-35659827

ABSTRACT

PURPOSE: Genes associated with nonsyndromic hearing loss are commonly included in reproductive carrier screening panels, which are now routinely offered in preconception and prenatal care in many countries. However, there is debate whether hearing loss should be considered a medical condition appropriate for screening. This systematic review assessed research on opinions of those with a lived experience of deafness and the general public regarding genetic testing for deafness in the reproductive setting. METHODS: Search of 5 online databases yielded 423 articles, 20 of which met inclusion criteria. We assessed the quality of each study, extracted data, and performed thematic analysis on qualitative studies. RESULTS: Most studies indicated interest in the use of prenatal diagnosis for deafness. However, there were mixed views, and sometimes strongly held views, expressed regarding the reproductive options that should be available to those with an increased chance of having a child with deafness. Studies were small, from a limited number of countries, and most were too old to include views regarding preimplantation genetic testing. CONCLUSION: There is a broad range of views regarding the use of reproductive options for deafness. Further research is essential to explore the benefits and harms of including nonsyndromic hearing loss genes in carrier screening.


Subject(s)
Deafness , Genetic Testing , Child , Deafness/diagnosis , Deafness/genetics , Female , Humans , Pregnancy , Prenatal Diagnosis , Reproduction
18.
Mol Genet Metab ; 137(1-2): 62-67, 2022.
Article in English | MEDLINE | ID: mdl-35926322

ABSTRACT

BACKGROUND: Beta-ureidopropionase deficiency, caused by variants in UPB1, has been reported in association with various neurodevelopmental phenotypes including intellectual disability, seizures and autism. AIM: We aimed to reassess the relationship between variants in UPB1 and a clinical phenotype. METHODS: Literature review, calculation of carrier frequencies from population databases, long-term follow-up of a previously published case and reporting of additional cases. RESULTS: Fifty-three published cases were identified, and two additional cases are reported here. Of these, 14 were asymptomatic and four had transient neurological features; clinical features in the remainder were variable and included non-neurological presentations. Several of the variants previously reported as pathogenic are present in population databases at frequencies higher than expected for a rare condition. In particular, the variant most frequently reported as pathogenic, p.Arg326Gln, is very common among East Asians, with a carrier frequency of 1 in 19 and 1 in 907 being homozygous for the variant in gnomAD v2.1.1. CONCLUSION: Pending the availability of further evidence, UPB1 should be considered a 'gene of uncertain clinical significance'. Caution should be used in ascribing clinical significance to biochemical features of beta-ureidopropionase deficiency and/or UPB1 variants in patients with neurodevelopmental phenotypes. UPB1 is not currently suitable for inclusion in gene panels for reproductive genetic carrier screening. SYNOPSIS: The relationship between beta-ureidopropionase deficiency due to UPB1 variants and clinical phenotypes is uncertain.


Subject(s)
Movement Disorders , Purine-Pyrimidine Metabolism, Inborn Errors , Humans , Brain Diseases/diagnosis , Brain Diseases/genetics , Movement Disorders/diagnosis , Movement Disorders/genetics , Phenotype , Purine-Pyrimidine Metabolism, Inborn Errors/diagnosis , Purine-Pyrimidine Metabolism, Inborn Errors/genetics , Amidohydrolases/genetics
19.
Ann Neurol ; 89(2): 212-225, 2021 02.
Article in English | MEDLINE | ID: mdl-33068037

ABSTRACT

OBJECTIVE: Friedreich ataxia (FA) is a progressive genetic neurodegenerative disorder with no approved treatment. Omaveloxolone, an Nrf2 activator, improves mitochondrial function, restores redox balance, and reduces inflammation in models of FA. We investigated the safety and efficacy of omaveloxolone in patients with FA. METHODS: We conducted an international, double-blind, randomized, placebo-controlled, parallel-group, registrational phase 2 trial at 11 institutions in the United States, Europe, and Australia (NCT02255435, EudraCT2015-002762-23). Eligible patients, 16 to 40 years of age with genetically confirmed FA and baseline modified Friedreich's Ataxia Rating Scale (mFARS) scores between 20 and 80, were randomized 1:1 to placebo or 150mg per day of omaveloxolone. The primary outcome was change from baseline in the mFARS score in those treated with omaveloxolone compared with those on placebo at 48 weeks. RESULTS: One hundred fifty-five patients were screened, and 103 were randomly assigned to receive omaveloxolone (n = 51) or placebo (n = 52), with 40 omaveloxolone patients and 42 placebo patients analyzed in the full analysis set. Changes from baseline in mFARS scores in omaveloxolone (-1.55 ± 0.69) and placebo (0.85 ± 0.64) patients showed a difference between treatment groups of -2.40 ± 0.96 (p = 0.014). Transient reversible increases in aminotransferase levels were observed with omaveloxolone without increases in total bilirubin or other signs of liver injury. Headache, nausea, and fatigue were also more common among patients receiving omaveloxolone. INTERPRETATION: In the MOXIe trial, omaveloxolone significantly improved neurological function compared to placebo and was generally safe and well tolerated. It represents a potential therapeutic agent in FA. ANN NEUROL 2021;89:212-225.


Subject(s)
Friedreich Ataxia/drug therapy , Triterpenes/therapeutic use , Accidental Falls , Activities of Daily Living , Adolescent , Adult , Antioxidants/metabolism , Double-Blind Method , Exercise Test , Female , Friedreich Ataxia/metabolism , Friedreich Ataxia/physiopathology , Humans , Male , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Treatment Outcome , Young Adult
20.
Mov Disord ; 37(1): 218-224, 2022 01.
Article in English | MEDLINE | ID: mdl-34643298

ABSTRACT

BACKGROUND: Neuroinflammation is proposed to accompany, or even contribute to, neuropathology in Friedreich ataxia (FRDA), with implications for disease treatment and tracking. OBJECTIVES: To examine brain glial activation and systemic immune dysfunction in people with FRDA and quantify their relationship with symptom severity, duration, and onset age. METHODS: Fifteen individuals with FRDA and 13 healthy controls underwent brain positron emission tomography using the translocator protein (TSPO) radioligand [18 F]-FEMPA, a marker of glial activation, together with the quantification of blood plasma inflammatory cytokines. RESULTS: [18 F]-FEMPA binding was significantly increased in the dentate nuclei (d = 0.67), superior cerebellar peduncles (d = 0.74), and midbrain (d = 0.87), alongside increased plasma interleukin-6 (IL-6) (d = 0.73), in individuals with FRDA compared to controls. Increased [18 F]-FEMPA binding in the dentate nuclei, brainstem, and cerebellar anterior lobe correlated with earlier age of symptom onset (controlling for the genetic triplet repeat expansion length; all r part < -0.6), and in the pons and anterior lobe with shorter disease duration (r = -0.66; -0.73). CONCLUSIONS: Neuroinflammation is evident in brain regions implicated in FRDA neuropathology. Increased neuroimmune activity may be related to earlier disease onset and attenuate over the course of the illness. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Friedreich Ataxia , Brain Stem/metabolism , Cerebellum/pathology , Friedreich Ataxia/diagnostic imaging , Friedreich Ataxia/pathology , Humans , Magnetic Resonance Imaging , Neuroinflammatory Diseases , Positron-Emission Tomography , Receptors, GABA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL