Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Exp Biol ; 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-34005719

ABSTRACT

Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.

2.
J Exp Biol ; 223(Pt 20)2020 10 15.
Article in English | MEDLINE | ID: mdl-32816959

ABSTRACT

Of all environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to pathogens in ectothermic animals. In France, massive mortality of Pacific oysters, Crassostrea gigas, caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to the apoptotic process, synaptic signaling and protein processes at 29°C. Concomitantly, the expression of genes associated with catabolism, metabolite transport, macromolecule synthesis and cell growth remained low from the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate host-pathogen interactions.


Subject(s)
Crassostrea , Herpesviridae , Animals , Crassostrea/genetics , France , Herpesviridae/genetics , Temperature , Transcriptome
3.
Fish Shellfish Immunol ; 97: 411-420, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31877358

ABSTRACT

The flat oyster, Ostrea chilensis, native to New Zealand (NZ) and Chile is considered an important ecological, cultural and fisheries resource. Currently, commercial landings of this species in NZ are restricted due to low population numbers caused by ongoing mortalities resulting from the presence of the haplosporidian parasite, Bonamia exitiosa. More recently, the arrival of B. ostreae in NZ led to major mortalities in farmed stocks. To understand how diseases caused by Bonamia spp. affect this oyster species, a more complete understanding of its biology, physiology and immune system is needed. The present study characterized, for the first time, hemocytes of adult O. chilensis, from the Foveaux Strait, NZ, using flow cytometry (FCM) and histology. Based on the internal complexity of the hemocytes, two main circulating hemocyte populations were identified: granulocytes and hyalinocytes (accounting for ~30% and ~70% of the total circulating hemocyte population, respectively). These were further divided into two sub-populations of each cell type using FCM. A third sub-population of granulocytes was identified using histology. Using FCM, functional and metabolic characteristics were investigated for the two main hemocyte types. Granulocytes showed higher phagocytic capabilities, lysosomal content, neutral lipid content and reactive oxygen species production compared to hyalinocytes, indicating their important role in cellular immune defence in this species. Methods of hemocyte sampling and storage were also investigated and flow cytometric protocols were detailed and verified to allow effective future investigations into the health status of this important species.


Subject(s)
Hemocytes/cytology , Immunity, Cellular , Immunity, Innate , Ostrea/immunology , Specimen Handling/veterinary , Animals , Flow Cytometry , Granulocytes/cytology , Hemocytes/classification , Hemolymph , New Zealand , Ostrea/cytology , Specimen Handling/methods
4.
Fish Shellfish Immunol ; 80: 71-79, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29859311

ABSTRACT

Temperature triggers marine diseases by changing host susceptibility and pathogen virulence. Oyster mortalities associated with the Ostreid herpesvirus type 1 (OsHV-1) have occurred seasonally in Europe when the seawater temperature range reaches 16-24 °C. Here we assess how temperature modulates oyster susceptibility to OsHV-1 and pathogen virulence. Oysters were injected with OsHV-1 suspension incubated at 21 °C, 26 °C and 29 °C and were placed in cohabitation with healthy oysters (recipients) at these three temperatures according to a fractional factorial design. Survival was followed for 14 d and recipients were sampled for OsHV-1 DNA quantification and viral gene expression. The oysters were all subsequently placed at 21 °C to evaluate the potential for virus reactivation, before being transferred to oyster farms to evaluate their long-term susceptibility to the disease. Survival of recipients at 29 °C (86%) was higher than at 21 °C (52%) and 26 °C (43%). High temperature (29 °C) decreased the susceptibility of oysters to OsHV-1 without altering virus infectivity and virulence. At 26 °C, the virulence of OsHV-1 was enhanced. Differences in survival persisted when the recipients were all placed at 21 °C, suggesting that OsHV-1 did not reactivate. Additional oyster mortality followed the field transfer, but the overall survival of oysters infected at 29 °C remained higher.


Subject(s)
Crassostrea/immunology , Crassostrea/virology , DNA Viruses/pathogenicity , Disease Susceptibility , Temperature , Animals , DNA Viruses/genetics , DNA, Viral/analysis , Female , Gene Expression , Herpesviridae Infections/veterinary , Male , Virulence
5.
Front Immunol ; 14: 1161145, 2023.
Article in English | MEDLINE | ID: mdl-37187746

ABSTRACT

Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.


Subject(s)
Crassostrea , Herpesviridae , Animals , Herpesviridae/physiology , Hemocytes , Immunity, Innate , Poly I-C
6.
Microbiol Spectr ; 10(6): e0195922, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314927

ABSTRACT

For over a decade, Pacific oyster mortality syndrome (POMS), a polymicrobial disease, induced recurring episodes of massive mortality affecting Crassostrea gigas oysters worldwide. Recent studies evidenced a combined infection of the ostreid herpesvirus (OsHV-1 µVar) and opportunistic bacteria in affected oysters. However, the role of the oyster microbiota in POMS is not fully understood. While some bacteria can protect hosts from infection, even minor changes to the microbial communities may also facilitate infection and worsen disease severity. Using a laboratory-based experimental infection model, we challenged juveniles from 10 biparental oyster families with previously established contrasted genetically based ability to survive POMS in the field. Combining molecular analyses and 16S rRNA gene sequencing with histopathological observations, we described the temporal kinetics of POMS and characterized the changes in microbiota during infection. By associating the microbiota composition with oyster mortality rate, viral load, and viral gene expression, we were able to identify both potentially harmful and beneficial bacterial amplicon sequence variants (ASVs). We also observed a delay in viral infection resulting in a later onset of mortality in oysters compared to previous observations and a lack of evidence of fatal dysbiosis in infected oysters. Overall, these results provide new insights into how the oyster microbiome may influence POMS disease outcomes and open new perspectives on the use of microbiome composition as a complementary screening tool to determine shellfish health and potentially predict oyster vulnerability to POMS. IMPORTANCE For more than a decade, Pacific oyster mortality syndrome (POMS) has severely impacted the Crassostrea gigas aquaculture industry, at times killing up to 100% of young farmed Pacific oysters, a key commercial species that is cultivated globally. These disease outbreaks have caused major financial losses for the oyster aquaculture industry. Selective breeding has improved disease resistance in oysters, but some levels of mortality persist, and additional knowledge of the disease progression and pathogenicity is needed to develop complementary mitigation strategies. In this holistic study, we identified some potentially harmful and beneficial bacteria that can influence the outcome of the disease. These results will contribute to advance disease management and aquaculture practices by improving our understanding of the mechanisms behind genetic resistance to POMS and assisting in predicting oyster vulnerability to POMS.


Subject(s)
Crassostrea , Herpesviridae , Microbiota , Humans , Animals , Crassostrea/genetics , Crassostrea/microbiology , RNA, Ribosomal, 16S/genetics , Herpesviridae/genetics , Disease Outbreaks , Microbiota/genetics
7.
Mar Environ Res ; 180: 105709, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35988349

ABSTRACT

The Pacific oyster Crassostrea gigas is established in the marine intertidal zone, experiencing rapid and highly dynamic environmental changes throughout the tidal cycle. Depending on the bathymetry, oysters face oxygen deprivation, lack of nutrients, and high changes in temperature during alternation of the cycles of emersion/immersion. Here we showed that intertidal oysters at a bathymetry level of 3 and 5 m delayed by ten days the onset of mortality associated with Pacific Oyster Mortality Syndrome (POMS) as compared to subtidal oysters. Intertidal oysters presented a lower growth but similar energetic reserves to subtidal oysters but induced proteomic changes indicative of a boost in metabolism, inflammation, and innate immunity that may have improved their resistance during infection with the Ostreid herpes virus. Our work highlights that intertidal harsh environmental conditions modify host-pathogen interaction and improve oyster health. This study opens new perspectives on oyster farming for mitigation strategies based on tidal height.


Subject(s)
Crassostrea , Herpesviridae , Animals , Host-Pathogen Interactions , Immunity, Innate , Proteomics
8.
Med Sci (Paris) ; 35(5): 463-466, 2019 May.
Article in French | MEDLINE | ID: mdl-31115329

ABSTRACT

The Warburg effect is one of the hallmarks of cancer cells in humans. It is a true metabolic reprogramming to aerobic glycolysis, allowing cancer cells to meet their particular energy needs for growth, proliferation, and resistance to apoptosis, depending on the microenvironment they encounter within the tumor. We have recently discovered that the Crassostrea gigas oyster can naturally reprogram its metabolism to the Warburg effect. Thus, the oyster becomes a new invertebrate model useful for cancer research. Due to its lifestyle, the oyster C. gigas has special abilities to adapt its metabolism to the extreme changes in the environment in which it is located. The oyster C. gigas is therefore a model of interest to study how the environment can control the Warburg effect under conditions that could not be explored in vertebrate model species.


Subject(s)
Crassostrea/physiology , Disease Models, Animal , Neoplasms , Animals , Apoptosis , Cell Proliferation , Cellular Microenvironment , Cellular Reprogramming , Glycolysis
9.
Biol Open ; 7(2)2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29463513

ABSTRACT

The Pacific oyster, Crassostrea gigas, is an osmoconforming bivalve exposed to wide salinity fluctuations. The physiological mechanisms used by oysters to cope with salinity stress are energy demanding and may impair other processes, such as defense against pathogens. This oyster species has been experiencing recurrent mortality events caused by the Ostreid herpesvirus 1 (OsHV-1). The objectives of this study were to investigate the effect of salinity (10, 15, 25 and 35‰) on energetic reserves, key enzyme activities and membrane fatty acids, and to identify the metabolic risk factors related to OsHV-1-induced mortality of oysters. Acclimation to low salinity led to increased water content, protein level, and energetic reserves (carbohydrates and triglycerides) of oysters. The latter was consistent with lower activity of hexokinase, the first enzyme involved in glycolysis, up-regulation of AMP-activated protein kinase, a major regulator of cellular energy metabolism, and lower activity of catalase, an antioxidant enzyme involved in management of reactive oxygen species. Acclimation to salinity also involved a major remodeling of membrane fatty acids. Particularly, 20:4n-6 decreased linearly with decreasing salinity, likely reflecting its mobilization for prostaglandin synthesis in oysters. The survival of oysters exposed to OsHV-1 varied from 43% to 96% according to salinity ( Fuhrmann et al., 2016). Risk analyses showed that activity of superoxide dismutase and levels of proteins, carbohydrates, and triglycerides were associated with a reduced risk of death. Therefore, animals with a higher antioxidant activity and a better physiological condition seemed less susceptible to OsHV-1.

10.
Mar Biotechnol (NY) ; 20(1): 87-97, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29344825

ABSTRACT

Voltage-dependent anion channel (VDAC) is a key mitochondrial protein. VDAC drives cellular energy metabolism by controlling the influx and efflux of metabolites and ions through the mitochondrial membrane, playing a role in its permeabilization. This protein exerts a pivotal role during the white spot syndrome virus (WSSV) infection in shrimp, through its involvement in a particular metabolism that plays in favor of the virus, the Warburg effect. The Warburg effect corresponds to an atypical metabolic shift toward an aerobic glycolysis that provides energy for rapid cell division and resistance to apoptosis. In the Pacific oyster Crassostrea gigas, the Warburg effect occurs during infection by Ostreid herpesvirus (OsHV-1). At present, the role of VDAC in the Warburg effect, OsHV-1 infection and apoptosis is unknown. Here, we developed a specific antibody directed against C. gigas VDAC. This tool allowed us to quantify the tissue-specific expression of VDAC, to detect VDAC oligomers, and to follow the amount of VDAC in oysters deployed in the field. We showed that oysters sensitive to a mortality event in the field presented an accumulation of VDAC. Finally, we propose to use VDAC quantification as a tool to measure the oyster susceptibility to OsHV-1 depending on its environment.


Subject(s)
Crassostrea/virology , Herpesviridae Infections/metabolism , Herpesviridae/metabolism , Voltage-Dependent Anion Channels/chemistry , Animals , Antibodies , Apoptosis , Crassostrea/metabolism , Herpesviridae Infections/physiopathology , Sequence Analysis, Protein , Voltage-Dependent Anion Channels/immunology
SELECTION OF CITATIONS
SEARCH DETAIL