Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Nature ; 629(8014): 1015-1020, 2024 May.
Article in English | MEDLINE | ID: mdl-38811709

ABSTRACT

Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky-O'Keefe-Radzievskii-Paddack effect)1 to be a notable factor in their evolution2. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 AU; its S-type spectrum3,4 is typical of bodies in this part of the main belt5. Here we report observations by the Lucy spacecraft6,7 as it passed within 431 km of Dinkinesh. Lucy revealed Dinkinesh, which has an effective diameter of only 720 m, to be unexpectedly complex. Of particular note is the presence of a prominent longitudinal trough overlain by a substantial equatorial ridge and the discovery of the first confirmed contact binary satellite, now named (152830) Dinkinesh I Selam. Selam consists of two near-equal-sized lobes with diameters of 210 m and 230 m. It orbits Dinkinesh at a distance of 3.1 km with an orbital period of about 52.7 h and is tidally locked. The dynamical state, angular momentum and geomorphologic observations of the system lead us to infer that the ridge and trough of Dinkinesh are probably the result of mass failure resulting from spin-up by YORP followed by the partial reaccretion of the shed material. Selam probably accreted from material shed by this event.

2.
Science ; 310(5746): 270-4, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16166477

ABSTRACT

We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.


Subject(s)
Meteoroids , Jupiter , Organic Chemicals/analysis , Spectrum Analysis , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL