Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 298
Filter
Add more filters

Publication year range
1.
Cell ; 186(15): 3245-3260.e23, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37369203

ABSTRACT

Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/genetics , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/metabolism , Protein Processing, Post-Translational , Mammals
2.
Cell ; 185(8): 1325-1345.e22, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35366418

ABSTRACT

Protein aggregation is a hallmark of multiple human pathologies. Autophagy selectively degrades protein aggregates via aggrephagy. How selectivity is achieved has been elusive. Here, we identify the chaperonin subunit CCT2 as an autophagy receptor regulating the clearance of aggregation-prone proteins in the cell and the mouse brain. CCT2 associates with aggregation-prone proteins independent of cargo ubiquitination and interacts with autophagosome marker ATG8s through a non-classical VLIR motif. In addition, CCT2 regulates aggrephagy independently of the ubiquitin-binding receptors (P62, NBR1, and TAX1BP1) or chaperone-mediated autophagy. Unlike P62, NBR1, and TAX1BP1, which facilitate the clearance of protein condensates with liquidity, CCT2 specifically promotes the autophagic degradation of protein aggregates with little liquidity (solid aggregates). Furthermore, aggregation-prone protein accumulation induces the functional switch of CCT2 from a chaperone subunit to an autophagy receptor by promoting CCT2 monomer formation, which exposes the VLIR to ATG8s interaction and, therefore, enables the autophagic function.


Subject(s)
Chaperonin Containing TCP-1 , Macroautophagy , Protein Aggregates , Animals , Mice , Apoptosis Regulatory Proteins/metabolism , Autophagy/physiology , Carrier Proteins/metabolism , Chaperonin Containing TCP-1/metabolism , Sequestosome-1 Protein/metabolism
3.
Cell ; 185(26): 4954-4970.e20, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36493774

ABSTRACT

Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.


Subject(s)
Nuclear Pore , Zebrafish , Animals , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Transcription Factors/metabolism , Zebrafish/metabolism , Zygote/metabolism , Genome
4.
Cell ; 175(4): 1059-1073.e21, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30270039

ABSTRACT

Motivated by the clinical observation that interruption of the mevalonate pathway stimulates immune responses, we hypothesized that this pathway may function as a druggable target for vaccine adjuvant discovery. We found that lipophilic statin drugs and rationally designed bisphosphonates that target three distinct enzymes in the mevalonate pathway have potent adjuvant activities in mice and cynomolgus monkeys. These inhibitors function independently of conventional "danger sensing." Instead, they inhibit the geranylgeranylation of small GTPases, including Rab5 in antigen-presenting cells, resulting in arrested endosomal maturation, prolonged antigen retention, enhanced antigen presentation, and T cell activation. Additionally, inhibiting the mevalonate pathway enhances antigen-specific anti-tumor immunity, inducing both Th1 and cytolytic T cell responses. As demonstrated in multiple mouse cancer models, the mevalonate pathway inhibitors are robust for cancer vaccinations and synergize with anti-PD-1 antibodies. Our research thus defines the mevalonate pathway as a druggable target for vaccine adjuvants and cancer immunotherapies.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cancer Vaccines/immunology , Diphosphonates/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mevalonic Acid/metabolism , rab5 GTP-Binding Proteins/antagonists & inhibitors , Animals , Antigen Presentation , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Cell Line, Tumor , Endosomes/drug effects , Female , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Protein Prenylation , rab5 GTP-Binding Proteins/metabolism
5.
Cell ; 169(3): 523-537.e15, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431250

ABSTRACT

The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and senataxin) with the noncoding RNA processing function of RNA exosome determine the strand-specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development.


Subject(s)
B-Lymphocytes/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Mutation , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Nucleus/metabolism , DNA Helicases/metabolism , Exoribonucleases/genetics , Genomic Instability , Immunoglobulin Heavy Chains/genetics , Mice , Multifunctional Enzymes , Nuclear Proteins/genetics , RNA Helicases , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/genetics
6.
Nature ; 622(7981): 139-148, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704724

ABSTRACT

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Subject(s)
Air , Aphids , Plant Diseases , Plants , Salicylic Acid , Signal Transduction , Aphids/physiology , Aphids/virology , Host Microbial Interactions , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Diseases/virology , Plant Proteins/metabolism , Plants/metabolism , Plants/parasitology , Plants/virology , Salicylic Acid/metabolism , Symbiosis , Nicotiana/immunology , Nicotiana/metabolism , Nicotiana/parasitology , Nicotiana/virology , Viral Proteins/metabolism , Animals
7.
Mol Cell ; 80(3): 512-524.e5, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33049228

ABSTRACT

CRISPR-Cas systems are bacterial anti-viral systems, and phages use anti-CRISPR proteins (Acrs) to inactivate these systems. Here, we report a novel mechanism by which AcrIF11 inhibits the type I-F CRISPR system. Our structural and biochemical studies demonstrate that AcrIF11 functions as a novel mono-ADP-ribosyltransferase (mART) to modify N250 of the Cas8f subunit, a residue required for recognition of the protospacer-adjacent motif, within the crRNA-guided surveillance (Csy) complex from Pseudomonas aeruginosa. The AcrIF11-mediated ADP-ribosylation of the Csy complex results in complete loss of its double-stranded DNA (dsDNA) binding activity. Biochemical studies show that AcrIF11 requires, besides Cas8f, the Cas7.6f subunit for binding to and modifying the Csy complex. Our study not only reveals an unprecedented mechanism of type I CRISPR-Cas inhibition and the evolutionary arms race between phages and bacteria but also suggests an approach for designing highly potent regulatory tools in the future applications of type I CRISPR-Cas systems.


Subject(s)
CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Cas Systems/physiology , Viral Proteins/metabolism , ADP-Ribosylation/physiology , Bacterial Proteins/genetics , Bacteriophages/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cryoelectron Microscopy/methods , DNA/metabolism , Models, Molecular , RNA, Bacterial/metabolism , Viral Proteins/genetics
8.
Mol Cell ; 80(4): 607-620.e12, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33113344

ABSTRACT

Aberrant mitophagy has been implicated in a broad spectrum of disorders. PINK1, Parkin, and ubiquitin have pivotal roles in priming mitophagy. However, the entire regulatory landscape and the precise control mechanisms of mitophagy remain to be elucidated. Here, we uncover fundamental mitophagy regulation involving PINK1 and a non-canonical role of the mitochondrial Tu translation elongation factor (TUFm). The mitochondrion-cytosol dual-localized TUFm interacts with PINK1 biochemically and genetically, which is an evolutionarily conserved Parkin-independent route toward mitophagy. A PINK1-dependent TUFm phosphoswitch at Ser222 determines conversion from activating to suppressing mitophagy. PINK1 modulates differential translocation of TUFm because p-S222-TUFm is restricted predominantly to the cytosol, where it inhibits mitophagy by impeding Atg5-Atg12 formation. The self-antagonizing feature of PINK1/TUFm is critical for the robustness of mitophagy regulation, achieved by the unique kinetic parameters of p-S222-TUFm, p-S65-ubiquitin, and their common kinase PINK1. Our findings provide new mechanistic insights into mitophagy and mitophagy-associated disorders.


Subject(s)
Drosophila melanogaster/growth & development , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mitophagy , Peptide Elongation Factor Tu/metabolism , Protein Kinases/metabolism , Animals , Cytosol/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , HeLa Cells , Humans , Male , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Peptide Elongation Factor Tu/genetics , Phosphorylation , Protein Interaction Domains and Motifs , Protein Kinases/genetics , Protein Transport , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
9.
EMBO J ; 42(19): e113328, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37641865

ABSTRACT

Eukaryotic organisms adapt to environmental fluctuations by altering their epigenomic landscapes and transcriptional programs. Nucleosomal histones carry vital epigenetic information and regulate gene expression, yet the mechanisms underlying chromatin-bound histone exchange remain elusive. Here, we found that histone H2Bs are globally degraded in Caenorhabditis elegans during starvation. Our genetic screens identified mutations in ubiquitin and ubiquitin-related enzymes that block H2B degradation in starved animals, identifying lysine 31 as the crucial residue for chromatin-bound H2B ubiquitination and elimination. Retention of aberrant nucleosomal H2B increased the association of the FOXO transcription factor DAF-16 with chromatin, generating an ectopic gene expression profile detrimental to animal viability when insulin/IGF signaling was reduced in well-fed animals. Furthermore, we show that the ubiquitin-proteasome system regulates chromosomal histone turnover in human cells. During larval development, C. elegans epidermal cells undergo H2B turnover after fusing with the epithelial syncytium. Thus, histone degradation may be a widespread mechanism governing dynamic changes of the epigenome.


Subject(s)
Caenorhabditis elegans , Histones , Animals , Humans , Histones/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Insulin/metabolism , Chromatin , Ubiquitination , Ubiquitin/metabolism
10.
J Cell Sci ; 137(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38853670

ABSTRACT

Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.


Subject(s)
Chlamydomonas reinhardtii , Cilia , Dyneins , Flagella , Kinesins , Proteomics , Cilia/metabolism , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Proteomics/methods , Kinesins/metabolism , Kinesins/genetics , Dyneins/metabolism , Flagella/metabolism , Biological Transport
11.
Cell ; 144(3): 353-63, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21255825

ABSTRACT

Activation-induced cytidine deaminase (AID) initiates immunoglobulin (Ig) heavy-chain (IgH) class switch recombination (CSR) and Ig variable region somatic hypermutation (SHM) in B lymphocytes by deaminating cytidines on template and nontemplate strands of transcribed DNA substrates. However, the mechanism of AID access to the template DNA strand, particularly when hybridized to a nascent RNA transcript, has been an enigma. We now implicate the RNA exosome, a cellular RNA-processing/degradation complex, in targeting AID to both DNA strands. In B lineage cells activated for CSR, the RNA exosome associates with AID, accumulates on IgH switch regions in an AID-dependent fashion, and is required for optimal CSR. Moreover, both the cellular RNA exosome complex and a recombinant RNA exosome core complex impart robust AID- and transcription-dependent DNA deamination of both strands of transcribed SHM substrates in vitro. Our findings reveal a role for noncoding RNA surveillance machinery in generating antibody diversity.


Subject(s)
B-Lymphocytes/metabolism , Cytidine Deaminase/metabolism , Exoribonucleases/metabolism , Immunoglobulin Class Switching , Immunoglobulin Heavy Chains/genetics , Multienzyme Complexes/metabolism , RNA/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/enzymology , Cell Line , Cells, Cultured , Humans , Mice , Transcription, Genetic
12.
Nature ; 577(7791): 576-581, 2020 01.
Article in English | MEDLINE | ID: mdl-31875854

ABSTRACT

DNA replication is a tightly regulated process that ensures the precise duplication of the genome during the cell cycle1. In eukaryotes, the licensing and activation of replication origins are regulated by both DNA sequence and chromatin features2. However, the chromatin-based regulatory mechanisms remain largely uncharacterized. Here we show that, in HeLa cells, nucleosomes containing the histone variant H2A.Z are enriched with histone H4 that is dimethylated on its lysine 20 residue (H4K20me2) and with bound origin-recognition complex (ORC). In vitro studies show that H2A.Z-containing nucleosomes bind directly to the histone lysine methyltransferase enzyme SUV420H1, promoting H4K20me2 deposition, which is in turn required for ORC1 binding. Genome-wide studies show that signals from H4K20me2, ORC1 and nascent DNA strands co-localize with H2A.Z, and that depletion of H2A.Z results in decreased H4K20me2, ORC1 and nascent-strand signals throughout the genome. H2A.Z-regulated replication origins have a higher firing efficiency and early replication timing compared with other origins. Our results suggest that the histone variant H2A.Z epigenetically regulates the licensing and activation of early replication origins and maintains replication timing through the SUV420H1-H4K20me2-ORC1 axis.


Subject(s)
DNA Replication Timing , DNA Replication , Histones/metabolism , Replication Origin/genetics , DNA/metabolism , DNA Replication/genetics , Epigenesis, Genetic , HeLa Cells , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Humans , Lysine/metabolism , Methylation , Nucleosomes/chemistry , Nucleosomes/metabolism , Origin Recognition Complex/metabolism
13.
Nature ; 578(7793): E8, 2020 02.
Article in English | MEDLINE | ID: mdl-31932733

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Mol Cell ; 70(1): 136-149.e7, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625034

ABSTRACT

Insect herbivory causes severe damage to plants and threatens the world's food production. During evolutionary adaptation, plants have evolved sophisticated mechanisms to rapidly accumulate a key defense hormone, jasmonate (JA), that triggers plant defense against herbivory. However, little is known about how plants initially activate JA biosynthesis at encounter with herbivory. Here, we uncover that a novel JAV1-JAZ8-WRKY51 (JJW) complex controls JA biosynthesis to defend against insect attack. In healthy plants, the JJW complex represses JA biosynthesis to restrain JA at a low basal level to ensure proper plant growth. When plants are injured by insect attack, injury rapidly triggers calcium influxes to activate calmodulin-dependent phosphorylation of JAV1, which disintegrates JJW complex and activates JA biosynthesis, giving rise to the rapid burst of JA for plant defense. Our findings offer new insights into the highly sophisticated defense systems evolved by plants to defend against herbivory.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Calcium/metabolism , Calmodulin/metabolism , Co-Repressor Proteins/metabolism , Cyclopentanes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Oxylipins/metabolism , Plant Leaves/enzymology , Plants, Genetically Modified/enzymology , Spodoptera/physiology , Transcription Factors/metabolism , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium Signaling , Calmodulin/genetics , Co-Repressor Proteins/genetics , Gene Expression Regulation, Plant , Herbivory , Intracellular Signaling Peptides and Proteins/genetics , Multiprotein Complexes , Phosphorylation , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics
15.
PLoS Pathog ; 19(6): e1011434, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37276230

ABSTRACT

Hepatitis E virus (HEV) is one of the main pathogenic agents of acute hepatitis in the world. The mechanism of HEV replication, especially host factors governing HEV replication is still not clear. Here, using HEV ORF1 trans-complementation cell culture system and HEV replicon system, combining with stable isotope labelling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we aimed to identify the host factors regulating HEV replication. We identified a diversity of host factors associated with HEV ORF1 protein, which were putatively responsible for viral genomic RNA replication, in these two cell culture models. Of note, the protein arginine methyltransferase 5 (PRMT5)/WDR77 complex was identified in both cell culture models as the top hit. Furthermore, we demonstrated that PRMT5 and WDR77 can specifically inhibit HEV replication, but not other viruses such as HCV or SARS-CoV-2, and this inhibition is conserved among different HEV strains and genotypes. Mechanistically, PRMT5/WDR77 can catalyse methylation of ORF1 on its R458, impairing its replicase activity, and virus bearing R458K mutation in ORF1 relieves the restriction of PRMT5/WDR77 accordingly. Taken together, our study promotes more comprehensive understanding of viral infections but also provides therapeutic targets for intervention.


Subject(s)
Hepatitis E virus , Hepatitis E , Humans , COVID-19 , Hepatitis E virus/genetics , Protein-Arginine N-Methyltransferases/genetics , SARS-CoV-2 , Virus Replication/physiology
16.
Drug Resist Updat ; 76: 101096, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38924996

ABSTRACT

Krüppel-like factor 12 (KLF12) has been characterized as a transcriptional repressor, and previous studies have unveiled its roles in angiogenesis, neural tube defect, and natural killer (NK) cell proliferation. However, the contribution of KLF12 to cancer treatment remains undefined. Here, we show that KLF12 is downregulated in various cancer types, and KLF12 downregulation promotes cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma (ESCC). Mechanistically, KLF12 binds to the promoters of L1 Cell Adhesion Molecule (L1CAM) and represses its expression. Depletion of L1CAM abrogates cisplatin resistance and cancer metastasis caused by KLF12 loss. Moreover, the E3 ubiquitin ligase tripartite motif-containing 27 (TRIM27) binds to the N-terminal region of KLF12 and ubiquitinates KLF12 at K326 via K33-linked polyubiquitination. Notably, TRIM27 depletion enhances the transcriptional activity of KLF12 and consequently inhibits L1CAM expression. Overall, our study elucidated a novel regulatory mechanism involving TRIM27, KLF12 and L1CAM, which plays a substantial role in cisplatin resistance and cancer metastasis in ESCC. Targeting these genes could be a promising approach for ESCC treatment.

17.
Nano Lett ; 24(7): 2226-2233, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38251911

ABSTRACT

Atomically precise doping of metal nanoclusters provides excellent opportunities not only for subtly tailoring their properties but also for in-depth understanding of composition (structure)-property correlation of metal nanoclusters and has attracted increasing interest partly due to its significance for fundamental research and practical applications. Although single and multiple metal atom doping of metal nanoclusters (NCs) has been achieved, sequential single-to-multiple metal atom doping is still a big challenge and has not yet been reported. Herein, by introducing a second ligand, a novel multistep synthesis method was developed, controlled sequential single-to-multiple metal atom doping was successfully achieved for the first time, and three doped NCs Au25Cd1(p-MBT)17(PPh3)2, Au18Cd2(p-MBT)14(PPh3)2, and [Au19Cd3(p-MBT)18]- (p-MBTH: para-methylbenzenethiol) were obtained, including two novel NCs that were precisely characterized via mass spectrometry, single-crystal X-ray crystallography, and so forth. Furthermore, sequential doping-induced evolutions in the atomic and crystallographic structures and optical and catalytic properties of NCs were revealed.

18.
Nat Chem Biol ; 18(9): 972-980, 2022 09.
Article in English | MEDLINE | ID: mdl-35739357

ABSTRACT

Ubiquitination-dependent histone crosstalk plays critical roles in chromatin-associated processes and is highly associated with human diseases. Mechanism studies of the crosstalk have been of the central focus. Here our study on the crosstalk between H2BK34ub and Dot1L-catalyzed H3K79me suggests a novel mechanism of ubiquitination-induced nucleosome distortion to stimulate the activity of an enzyme. We determined the cryo-electron microscopy structures of Dot1L-H2BK34ub nucleosome complex and the H2BK34ub nucleosome alone. The structures reveal that H2BK34ub induces an almost identical orientation and binding pattern of Dot1L on nucleosome as H2BK120ub, which positions Dot1L for the productive conformation through direct ubiquitin-enzyme contacts. However, H2BK34-anchored ubiquitin does not directly interact with Dot1L as occurs in the case of H2BK120ub, but rather induces DNA and histone distortion around the modified site. Our findings establish the structural framework for understanding the H2BK34ub-H3K79me trans-crosstalk and highlight the diversity of mechanisms for histone ubiquitination to activate chromatin-modifying enzymes.


Subject(s)
Histones , Nucleosomes , Chromatin , Cryoelectron Microscopy , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Ubiquitin/metabolism , Ubiquitination
19.
Nat Chem Biol ; 18(1): 70-80, 2022 01.
Article in English | MEDLINE | ID: mdl-34916619

ABSTRACT

An RNA-involved phase-separation model has been proposed for transcription control. However, the molecular links that connect RNA to the transcription machinery remain missing. Here we find that RNA-binding proteins (RBPs) constitute half of the chromatin proteome in embryonic stem cells (ESCs), some being colocalized with RNA polymerase (Pol) II at promoters and enhancers. Biochemical analyses of representative RBPs show that the paraspeckle protein PSPC1 inhibits the RNA-induced premature release of Pol II, and makes use of RNA as multivalent molecules to enhance the formation of transcription condensates and subsequent phosphorylation and release of Pol II. This synergistic interplay enhances polymerase engagement and activity via the RNA-binding and phase-separation activities of PSPC1. In ESCs, auxin-induced acute degradation of PSPC1 leads to genome-wide defects in Pol II binding and nascent transcription. We propose that promoter-associated RNAs and their binding proteins synergize the phase separation of polymerase condensates to promote active transcription.


Subject(s)
RNA Polymerase II/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Gene Expression Regulation , Phosphorylation , Promoter Regions, Genetic , Protein Binding
20.
Nature ; 557(7707): 674-678, 2018 05.
Article in English | MEDLINE | ID: mdl-29795342

ABSTRACT

Protein ubiquitination is a multifaceted post-translational modification that controls almost every process in eukaryotic cells. Recently, the Legionella effector SdeA was reported to mediate a unique phosphoribosyl-linked ubiquitination through successive modifications of the Arg42 of ubiquitin (Ub) by its mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains. However, the mechanisms of SdeA-mediated Ub modification and phosphoribosyl-linked ubiquitination remain unknown. Here we report the structures of SdeA in its ligand-free, Ub-bound and Ub-NADH-bound states. The structures reveal that the mART and PDE domains of SdeA form a catalytic domain over its C-terminal region. Upon Ub binding, the canonical ADP-ribosyltransferase toxin turn-turn (ARTT) and phosphate-nicotinamide (PN) loops in the mART domain of SdeA undergo marked conformational changes. The Ub Arg72 might act as a 'probe' that interacts with the mART domain first, and then movements may occur in the side chains of Arg72 and Arg42 during the ADP-ribosylation of Ub. Our study reveals the mechanism of SdeA-mediated Ub modification and provides a framework for further investigations into the phosphoribosyl-linked ubiquitination process.


Subject(s)
Legionella pneumophila/enzymology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Ubiquitin/metabolism , Ubiquitination , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/metabolism , Arginine/metabolism , Bacterial Proteins , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Molecular Chaperones/metabolism , NAD/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Protein Processing, Post-Translational , Substrate Specificity , Ubiquitin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL