Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 38(13-14): 675-691, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39137945

ABSTRACT

Tumor suppressor genes play critical roles in normal tissue homeostasis, and their dysregulation underlies human diseases including cancer. Besides human genetics, model organisms such as Drosophila have been instrumental in discovering tumor suppressor pathways that were subsequently shown to be highly relevant in human cancer. Here we show that hyperplastic disc (Hyd), one of the first tumor suppressors isolated genetically in Drosophila and encoding an E3 ubiquitin ligase with hitherto unknown substrates, and Lines (Lin), best known for its role in embryonic segmentation, define an obligatory tumor suppressor protein complex (Hyd-Lin) that targets the zinc finger-containing oncoprotein Bowl for ubiquitin-mediated degradation, with Lin functioning as a substrate adaptor to recruit Bowl to Hyd for ubiquitination. Interestingly, the activity of the Hyd-Lin complex is directly inhibited by a micropeptide encoded by another zinc finger gene, drumstick (drm), which functions as a pseudosubstrate by displacing Bowl from the Hyd-Lin complex, thus stabilizing Bowl. We further identify the epigenetic regulator Polycomb repressive complex1 (PRC1) as a critical upstream regulator of the Hyd-Lin-Bowl pathway by directly repressing the transcription of the micropeptide drm Consistent with these molecular studies, we show that genetic inactivation of Hyd, Lin, or PRC1 resulted in Bowl-dependent hyperplastic tissue overgrowth in vivo. We also provide evidence that the mammalian homologs of Hyd (UBR5, known to be recurrently dysregulated in various human cancers), Lin (LINS1), and Bowl (OSR1/2) constitute an analogous protein degradation pathway in human cells, and that OSR2 promotes prostate cancer tumorigenesis. Altogether, these findings define a previously unrecognized tumor suppressor pathway that links epigenetic program to regulated protein degradation in tissue growth control and tumorigenesis.


Subject(s)
Carcinogenesis , Drosophila Proteins , Proteolysis , Ubiquitin-Protein Ligases , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Carcinogenesis/genetics , Humans , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/embryology , Genes, Tumor Suppressor , Ubiquitination , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics
2.
Nature ; 628(8006): 99-103, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538794

ABSTRACT

Stable aluminosilicate zeolites with extra-large pores that are open through rings of more than 12 tetrahedra could be used to process molecules larger than those currently manageable in zeolite materials. However, until very recently1-3, they proved elusive. In analogy to the interlayer expansion of layered zeolite precursors4,5, we report a strategy that yields thermally and hydrothermally stable silicates by expansion of a one-dimensional silicate chain with an intercalated silylating agent that separates and connects the chains. As a result, zeolites with extra-large pores delimited by 20, 16 and 16 Si tetrahedra along the three crystallographic directions are obtained. The as-made interchain-expanded zeolite contains dangling Si-CH3 groups that, by calcination, connect to each other, resulting in a true, fully connected (except possible defects) three-dimensional zeolite framework with a very low density. Additionally, it features triple four-ring units not seen before in any type of zeolite. The silicate expansion-condensation approach we report may be amenable to further extra-large-pore zeolite formation. Ti can be introduced in this zeolite, leading to a catalyst that is active in liquid-phase alkene oxidations involving bulky molecules, which shows promise in the industrially relevant clean production of propylene oxide using cumene hydroperoxide as an oxidant.

3.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36537081

ABSTRACT

Qualitative or quantitative prediction models of structure-activity relationships based on graph neural networks (GNNs) are prevalent in drug discovery applications and commonly have excellently predictive power. However, the network information flows of GNNs are highly complex and accompanied by poor interpretability. Unfortunately, there are relatively less studies on GNN attributions, and their developments in drug research are still at the early stages. In this work, we adopted several advanced attribution techniques for different GNN frameworks and applied them to explain multiple drug molecule property prediction tasks, enabling the identification and visualization of vital chemical information in the networks. Additionally, we evaluated them quantitatively with attribution metrics such as accuracy, sparsity, fidelity and infidelity, stability and sensitivity; discussed their applicability and limitations; and provided an open-source benchmark platform for researchers. The results showed that all attribution techniques were effective, while those directly related to the predicted labels, such as integrated gradient, preferred to have better attribution performance. These attribution techniques we have implemented could be directly used for the vast majority of chemical GNN interpretation tasks.


Subject(s)
Benchmarking , Drug Discovery , Humans , Neural Networks, Computer , Research Personnel , Structure-Activity Relationship
4.
Funct Integr Genomics ; 24(3): 78, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632141

ABSTRACT

Transcriptional factor HOXB9, a part of the HOX gene family, plays a crucial role in the development of diverse cancer types. This study aimed to elucidate the regulatory mechanism of HOXB9 on the proliferation and invasion of laryngeal squamous cell carcinoma (LSCC) cells to provide guidance for the development and prognosis of LSCC. The CRISPR/Cas9 method was employed in LSCC cell lines to knock out the HOXB9 gene and validate its effects on the proliferation, migration, invasion, and regulation of LSCC cells. CCK-8 and flow cytometry were used to detect cell viability and proliferation; Tunnel was used to detect cell apoptosis, and transwell was used to detect cell migration and invasion. The effect of HOXB9 on tumor growth was tested in nude mice. The downstream target genes regulated by HOXB9 were screened by microarray analysis and verified by Western blotting, immunohistochemistry, chromatin immunoprecipitation, and double-luciferase reporter assays. The current research investigated molecular pathways governed by HOXB9 in the development of LSCC. Additionally, both laboratory- and living-organism-based investigations revealed that disrupting the HOXB9 gene through the CRISPR/CAS9 mechanism restrained cellular growth, movement, and infiltration, while enhancing cellular apoptosis. Detailed analyses of LSCC cell strains and human LSCC samples revealed that HOXB9 promoted LSCC progression by directly elevating the transcriptional activity of MMP12. HOXB9 could influence changes in LSCC cell functions, and the mechanism of action might be exerted through its downstream target gene, MMP12.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Homeodomain Proteins , Laryngeal Neoplasms , Matrix Metalloproteinase 12 , Animals , Humans , Mice , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Genes, Homeobox , Head and Neck Neoplasms/genetics , Homeodomain Proteins/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Mice, Nude , Squamous Cell Carcinoma of Head and Neck/genetics
5.
Small ; 20(23): e2308051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38143293

ABSTRACT

Polydimethylsiloxane (PDMS)-based transparent and superhydrophobic coatings have important applications, such as anti-icing, corrosion resistance, self-cleaning, etc. However, their applications are limited by the inevitable introduction of nanoparticles/high-temperature/segmented PDMS to facilitate a raspy surface. In this study, a self-roughed, neat PDMS superhydrophobic coating with high transparency is developed via a one-step spray-coating technique. PDMS suspensions with various droplet sizes are synthesized and used as building blocks for raspy surface formation by controlled curing on the warm substrate. The optimal coating exhibits a large water contact angle of 155.4° and transparency (T550 = 82.3%). Meanwhile, the employed spray-coating technique is applicable to modify a plethora of substrates. For proof-of-concept demonstrations, the use of the PDMS hydrophobic coating for anti-liquid-interference electrothermal devices and further transparent observation window for long-term operation in a sub-zero environment is shown successful. The proposed facile synthesis method of hydrophobic PDMS coating is expected to have great potential for a broad range of applications in the large-scale fabrication of fluorine-free, eco-friendly superhydrophobic surfaces.

6.
J Med Virol ; 96(9): e29931, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39291826

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) and hemorrhagic fever with renal syndrome (HFRS) usually have different infection routes, and coinfection is relatively rare. This study examines the clinical and etiological characteristics of coinfection by these two pathogens to provide important references for clinical diagnosis and treatment. Blood samples from 22 clinically diagnosed patients with HFRS were collected for molecular detection of HFRS and common tick and mouse borne diseases. Inoculate the blood of six severe and critically patients into cells to isolate and proliferate potential viruses, and retest the cell culture to determine the pathogen. In addition, complete data were collected from these 22 HFRS and concurrent SFTS patients, and white blood cells (WBCs), platelet (PLT), blood urea nitrogen (BUN), creatinine (Cr) and other data were compared and analyzed. A total of 31 febrile patients, including 22 HFRS patients and 9 SFTS patients, were collected from September 2021 to October 2022. Among these HFRS patients, 11 were severe or critical. Severe and critical HFRS patients were characterized by rodent exposure history, pharyngeal and conjunctival hyperemia, abnormal WBC and PLT counts, and elevated BUN and Cr values. Virus isolation and molecular detection on blood samples from 6 patients showed that three of the six severe patients were positive for hantaan virus (HTNV), and two of the three HTNV positives were also positive for SFTS bunyavirus (SFTSV). The two coinfected patients exhibited different clinical and laboratory characteristics compared to those infected by either virus alone. Coinfection of HTNV and SFTSV leads to severe and complex hemorrhagic fever. Laboratory characteristics, such as the indicators of WBC, PLT, BUN, and Cr, may differ between HFRS and SFTS. These findings have implications and provide references for the diagnosis and treatment of coinfected cases.


Subject(s)
Coinfection , Hantaan virus , Hemorrhagic Fever with Renal Syndrome , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Coinfection/virology , Hantaan virus/isolation & purification , Hantaan virus/genetics , Hantaan virus/pathogenicity , Male , Female , Middle Aged , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/blood , Adult , Phlebovirus/genetics , Phlebovirus/isolation & purification , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/blood , Hemorrhagic Fever with Renal Syndrome/diagnosis , Hemorrhagic Fever with Renal Syndrome/complications , Aged , Animals , Young Adult
7.
Theor Appl Genet ; 137(10): 227, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39299955

ABSTRACT

KEY MESSAGE: qPEDS1, a major quantitative trait locus that determines kernel row number during domestication, harbors the proposed causal gene Zm00001d033675, which may affect jasmonic acid biosynthesis and determine the fate of spikelets. Maize domestication has achieved the production of maize with enlarged ears, enhancing grain productivity dramatically. Kernel row number (KRN), an important yield-related trait, has increased from two rows in teosinte to at least eight rows in modern maize. However, the genetic mechanisms underlying this process remain unclear. To understand KRN domestication, we developed a teosinte-maize BC2F7 population by introgressing teosinte into a maize background. We identified one line, Teosinte ear rank1 (Ter1), with only 5-7 kernel rows which is fewer than those in almost all maize inbred lines. We detected two quantitative trait loci underlying Ter1 and fine-mapped the major one to a 300-kb physical interval. Two candidate genes, Zm674 and Zm675, were identified from 26 maize reference genomes and teosinte bacterial artificial chromosome sequences. Finally, we proposed that Ter1 affects jasmonic acid biosynthesis in the developing ear to determine KRN by the fate of spikelets. This study provides novel insights into the genetic and molecular mechanisms underlying KRN domestication and candidates for de novo wild teosinte domestication.


Subject(s)
Cyclopentanes , Domestication , Oxylipins , Phenotype , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/growth & development , Oxylipins/metabolism , Cyclopentanes/metabolism , Chromosome Mapping/methods , Seeds/genetics , Seeds/growth & development , Genes, Plant , Plant Breeding
8.
Environ Sci Technol ; 58(21): 9381-9392, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38747138

ABSTRACT

Designing suitable catalysts for efficiently degrading volatile organic compounds (VOCs) is a great challenge due to the distinct variety and nature of VOCs. Herein, the suitability of different typical VOCs (toluene and acetone) over Pt-based catalysts and Mn2O3 was investigated carefully. The activity of Mn2O3 was inferior to Pt-loaded catalysts in toluene oxidation but showed superior ability for destroying acetone, while Pt loading could boost the catalytic activity of Mn2O3 for both acetone and toluene. This suitability could be determined by the physicochemical properties of the catalysts and the structure of the VOC since toluene destruction activity is highly reliant on Pt0 in the metallic state and linearly correlated with the amount of surface reactive oxygen species (Oads), while the crucial factor that affects acetone oxidation is the mobility of lattice oxygen (Olat). The Pt/Mn2O3 catalyst shows highly active Pt-O-Mn interfacial sites, favoring the generation of Oads and promoting Mn-Olat mobility, leading to its excellent performance. Therefore, the design of abundant active sites is an effective means of developing highly adaptive catalysts for the oxidation of different VOCs.


Subject(s)
Oxidation-Reduction , Platinum , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Catalysis , Platinum/chemistry , Oxides/chemistry , Manganese Compounds/chemistry
9.
BMC Pulm Med ; 24(1): 94, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395894

ABSTRACT

BACKGROUND: Asthma is a common respiratory disease. In asthma, the small airways have more intensive inflammation and prominent airway remodelling, compared to the central airways. We aimed to investigate the predictive value of risk factors and the fractional concentration of exhaled nitric oxide (FeNO) for persistent small airway dysfunction (p-SAD), and compare the effects of different treatment modalities. METHODS: This retrospective cohort study included 248 children with asthma (aged 4-11 years). Binary logistic regression was used to analyse the risk factors for p-SAD. Correlations among FEV1/FVC, small airway function parameters, and FeNO levels in patients with asthma were analysed using Spearman's rank correlation. The receiver operating characteristic curve and the Delong test were used to analyse the predictive value of FeNO for p-SAD. Differences in the treatment effects of inhaled corticosteroids (ICS) and ICS with a long-acting beta-agonist (ICS/LABA) on p-SAD were analysed using Fisher's exact test. RESULTS: Asthmatic children with older age of receiving the regular treatment (OR 1.782, 95% CI 1.082-2.935), with younger age at the time of onset of suspected asthma symptoms (OR 0.602, 95% CI 0.365-0.993), with longer duration of using ICS or ICS/LABA (OR 1.642, 95% CI 1.170-2.305) and with worse asthma control (OR 3.893, 95% CI 1.699-8.922) had increased risk for p-SAD. Significant negative correlations of small airway function parameters with FeNO at a 200 mL/s flow rate (FeNO200), and the concentration of nitric oxide in the alveolar or acinar region (CaNO) were observed. The areas under the curve of FeNO200 (cut-off:10.5ppb), CaNO (cut-off:5.1ppb), and FeNO200 combined with CaNO were 0.743, 0.697, and 0.750, respectively, for asthma with p-SAD. After using ICS or ICS/LABA, switching to ICS/LABA was easier than continuing with ICS to improve small airway dysfunction (SAD) in the 8th month. CONCLUSIONS: Paediatric asthma with p-SAD is associated with older age at receiving regular treatment, younger age at the time of onset of suspected asthma symptoms, longer duration of using ICS or ICS/LABA, worse asthma control, and higher FeNO200 and CaNO levels, all of which can be combined with small airway function indicators to distinguish p-SAD from asthma. ICS/LABA improves SAD better than ICS alone.


Subject(s)
Anti-Asthmatic Agents , Asthma , Humans , Child , Anti-Asthmatic Agents/therapeutic use , Nitric Oxide , Retrospective Studies , Administration, Inhalation , Asthma/drug therapy , Adrenal Cortex Hormones/therapeutic use , Drug Therapy, Combination
10.
Biochem Genet ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345758

ABSTRACT

In the present study, we aimed to explore the effect and underlying mechanism of metformin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). A total of 24 BALB/C mice were randomly divided into four groups: control group, LPS group and metformin group (50 or 100 mg/kg). The histological changes and cell apoptosis in kidney tissues were detected by hematoxylin-eosin staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling assay, respectively. Enzyme-linked immunosorbent assay was applied to determine serum levels of blood urea nitrogen (BUN), kidney injury molecule-1 (Kim-1), creatinine (Cre), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß). Western blotting analysis were carried out to confirm the expressions of monocyte chemotactic protein-inducible protein 1 (MCPIP1), silent information regulator sirtuin 1 (SIRT1), and NF-κB p65 (acetyl K310). Compared with the control group, the mice in LPS group had glomerular capillary dilatation, renal interstitial edema, tubular cell damage and apoptosis. The serum levels of BUN, KIM-1, Cre, TNF-α, and IL-1ß in LPS group were significantly higher than those in control group. Moreover, LPS also elevated the expressions of MCPIP1 and NF-κB p65 (acetyl K310) but decreased the expression of SIRT1 in kidney tissues. However, metformin distinctly decreased LPS-induced renal dysfunction, the serum levels of BUN, KIM-1, Cre, TNF-α, and IL-1ß. In addition, metformin markedly increased the expressions of MCPIP1 and SIRT1 but decreased the expression of NF-κB p65 (acetyl K310) in kidney tissues. Metformin prevented LPS-induced AKI by up-regulating the MCPIP1/SIRT1 signaling pathway and subsequently inhibiting NF-κB-mediated inflammation response.

11.
Pediatr Surg Int ; 40(1): 38, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253735

ABSTRACT

PURPOSE: Hirschsprung's disease (HSCR) is the leading cause of neonatal functional intestinal obstruction, which has been identified in many familial cases. HSCR, a multifactorial disorder of enteric nervous system (ENS) development, is associated with at least 24 genes and seven chromosomal loci, with RET and EDNRB as its major genes. We present a genetic investigation of familial HSCR to clarify the genotype-phenotype relationship. METHODS: We performed whole exome sequencing (WES) on Illumina HiSeq X Ten platform to investigate genetic backgrounds of core family members, and identified the possibly harmful mutation genes. Mutation carriers and pedigree relatives were validated by Sanger sequencing for evaluating the gene penetrance. RESULTS: Four familial cases showed potential disease-relative variants in EDNRB and RET gene, accounting for all detection rate of 57.1%. Three familial cases exhibited strong pathogenic variants as frameshift or missense mutations in EDNRB gene. A novel c.367delinsTT mutation of EDNRB was identified in one family member. The other two EDNRB mutations, c.553G>A in family 2 and c.877delinsTT in family 5, have been reported in previous literatures. The penetrance of EDNRB variants was 33-50% according mutation carries. In family 6, the RET c.1858T>C (C620R) point mutation has previously been reported to cause HSCR, with 28.5% penetrance. CONCLUSION: We identified a novel EDNRB (deleted C and inserted TT) mutation in this study using WES. Heterozygote variations in EDNRB gene were significantly enriched in three families and RET mutations were identified in one family. EDNRB variants showed an overall higher incidence and penetrance than RET in southern Chinese families cases.


Subject(s)
Hirschsprung Disease , Intestinal Obstruction , Receptor, Endothelin B , Humans , Infant, Newborn , China/epidemiology , Hirschsprung Disease/genetics , Incidence , Mutation , Receptor, Endothelin B/genetics
12.
Can Assoc Radiol J ; 75(4): 868-877, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38577746

ABSTRACT

PURPOSE: To assess the diagnostic utility of clinical magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) in distinguishing between histological grading and isocitrate dehydrogenase (IDH) classification in adult diffuse gliomas. METHODS: A retrospective analysis was conducted on 247 patients diagnosed with adult diffuse glioma. Experienced radiologists evaluated DWI and MRS images. The Kruskal-Wallis test examined differences in DWI and MRS-related parameters across histological grades, while the Mann-Whitney U test assessed molecular classification. Receiver Operating Characteristic (ROC) curves evaluated parameter effectiveness. Survival curves, stratified by histological grade and IDH classification, were constructed using the Kaplan-Meier test. RESULTS: The cohort comprised 141 males and 106 females, with ages ranging from 19 to 85 years. The Kruskal-Wallis test revealed significant differences in ADC mean, Cho/NAA, and Cho/Cr concerning glioma histological grade (P < .01). Subsequent application of Dunn's test showed significant differences in ADC mean among each histological grade (P < .01). Notably, Cho/NAA exhibited a marked distinction between grade 2 and grade 3/4 gliomas (P < .01). The Mann-Whitney U test indicated that only ADC mean showed statistical significance for IDH molecular classification (P < .01). ROC curves were constructed to demonstrate the effectiveness of the specified parameters. Survival curves were also delineated to portray survival outcomes categorized by histological grade and IDH classification. Conclusions: Clinical MRS demonstrates efficacy in glioma histological grading but faces challenges in IDH classification. Clinical DWI's ADC mean parameter shows significant distinctions in both histological grade and IDH classification.


Subject(s)
Brain Neoplasms , Diffusion Magnetic Resonance Imaging , Glioma , Isocitrate Dehydrogenase , Magnetic Resonance Spectroscopy , Neoplasm Grading , Humans , Male , Female , Middle Aged , Glioma/diagnostic imaging , Glioma/pathology , Glioma/classification , Adult , Aged , Diffusion Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Retrospective Studies , Aged, 80 and over , Magnetic Resonance Spectroscopy/methods , Young Adult
13.
Soft Matter ; 19(31): 5907-5915, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37483086

ABSTRACT

Receptor-mediated endocytosis (RME) is a highly complex process carried out by bioparticles, such as viruses and drug carriers, to enter cells. The discovery of both clathrin-dependent and clathrin-free pathways makes the RME process even more intriguing. Numerical models have been developed to facilitate the exploration of the process. However, the impacts of the receptor properties on RME have been less studied partially due to the oversimplifications of the receptor models. In this paper, we implement a stochastic model to systematically investigate the effects of mechanical (receptor flexure), geometrical (receptor length) and biochemical (ligand-receptor cutoff) properties of receptors, on RME with and without the existence of clathrin. Our simulation results show that the receptor's flexural rigidity plays an important role in RME with clathrin. There is a threshold beyond which particle internalization will not occur. Without clathrin, it is very difficult to achieve complete endocytosis with ligand-receptor interactions alone. A shorter receptor length and longer ligand-receptor reaction cutoff promote the formation of ligand-receptor bonds and facilitate particle internalization. Complete internalization can only be obtained with an extremely short receptor length and long reaction cutoff. Therefore, there are most likely some additional mechanisms to drive the membrane deformation in clathrin-free RME. Our results yield important fundamental insights into RME and provide crucial guidance when correlating the simulation results with experimental observations.


Subject(s)
Clathrin , Endocytosis , Ligands , Clathrin/metabolism
14.
Environ Sci Technol ; 57(7): 2918-2927, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36691294

ABSTRACT

To improve the reactivity and lifetime of catalysts in the catalytic ozonation of toluene, a simple strategy was provided to regulate the morphology and microstructure of δ-MnO2 via the hydrothermal reaction temperature. The effects of the reaction temperature and the ozone to toluene concentration ratio on the catalyst performance were investigated. The optimized MnO2-260 catalyst prepared at the limiting hydrothermal temperature (260 °C) showed high catalytic activity (XTol = 95%) and excellent stability (1200 min) at the approximately ambient temperature of 40 °C, which was superior to the results in previous studies. The structure and morphology of δ-MnO2 were characterized by extended X-ray absorption fine structure, X-ray diffraction, scanning electron microscopy, positron annihilation lifetime spectroscopy, electron spin resonance, and other techniques. Experimental results and density functional theory calculations were in agreement that surface oxygen vacancy clusters, especially surface oxygen dimer vacancies, are critical in ozone activation. Oxygen vacancies can facilitate the adsorption and activation of O3 to generate reactive oxygen species (ROS, including 1O2, O2-, and •OH), leading to superior ozonation activity to degrade toluene and intermediates. Meanwhile, free radical detection and scavenger tests indicated that •OH is the primary ROS during toluene ozonation rather than 1O2 or O2-.


Subject(s)
Oxides , Ozone , Oxides/chemistry , Reactive Oxygen Species , Manganese Compounds/chemistry , Toluene , Oxygen , Catalysis , Electron Spin Resonance Spectroscopy
15.
Environ Sci Technol ; 57(2): 1123-1133, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36647680

ABSTRACT

The miscellaneous volatile organic compounds (VOCs) in industrial flue gas streams usually demonstrate significant mutual inhibition effects, and the behavior of a particular VOC in mixtures is not clear, which hinders the application of catalytic technology. This study examines the catalytic oxidation and mixing effects of representative VOCs in industrial exhausts, consisting of acetone (AC), ethyl acetate (EA), and toluene (Tol), on common Mn-based catalysts (e.g., MnO2, Mn2O3, LaMnO3, and Mn3O4) by means of intrinsic activity evaluation, coadsorption, VOC temperature-programmed oxidation, in situ diffuse reflectance infrared Fourier transform spectroscopy, and gas chromatography-mass spectrometry. The results showed no inhibiting effect on the conversion of these VOCs when combusted together; instead, a significant mutual promotion effect was found, especially on Tol destruction, with a sharp decrease in the Tol T50 from 214 to 158 °C on MnO2. It is proposed for the first time that the addition of AC/EA in Tol combustion leads to the generation of o/m-methyl phenol, which changes the rate-determining step of the ring-opening process, thus elevating the conversion of Tol together with AC and EA in the mixture at low temperatures.


Subject(s)
Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Oxides/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction , Temperature , Catalysis , Toluene/analysis , Toluene/chemistry
16.
Eur J Nutr ; 62(2): 771-782, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36261730

ABSTRACT

PURPOSE: Fruit intake is beneficial to several chronic diseases, but controversial in diabetes. We aimed to investigate prospectively the associations of whole fresh fruit intake with risk of incident type 2 diabetes (T2D) in subjects with different glucose regulation capacities. METHODS: The present study included 79,922 non-diabetic participants aged ≥ 40 years from an ongoing nationwide prospective cohort in China. Baseline fruit intake information was collected by a validated food frequency questionnaire. Plasma HbA1c, fasting and 2 h post-loading glucose levels were measured at both baseline and follow-up examinations. Cox proportional hazards models were used to calculate hazard ratio (HR) and 95% confidence intervals (CI) for incident diabetes among participants with normal glucose tolerance (NGT) and prediabetes, after adjusted for multiple confounders. Restricted cubic spline analysis was applied for dose-response relation. RESULTS: During a median 3.8-year follow-up, 5886 (7.36%) participants developed diabetes. Overall, we identified a linear and dose-dependent inverse association between dietary whole fresh fruit intake and risk of incident T2D. Each 100 g/d higher fruit intake was associated with 2.8% lower risk of diabetes (HR 0.972, 95%CI [0.949-0.996], P = 0.0217), majorly benefiting NGT subjects with 15.2% lower risk (HR 0.848, 95%CI [0.766-0.940], P = 0.0017), while not significant in prediabetes (HR 0.981, 95%CI 0.957-4.005, P = 0.1268). Similarly, the inverse association was present in normoglycemia individuals with a 48.6% lower risk of diabetes when consuming fruits > 7 times/week comparing to those < 1 time/week (HR 0.514, 95% CI [0.368-0.948]), but not in prediabetes (HR 0.883, 95% CI [0.762-1.023]). CONCLUSION: These findings suggest that higher frequency and amount of fresh fruit intake may protect against incident T2D, especially in NGT, but not in prediabetes, highlighting the dietary recommendation of higher fresh fruit consumption to prevent T2D in normoglycemia population.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Humans , Diabetes Mellitus, Type 2/epidemiology , Fruit , Prospective Studies , Incidence , Glucose , Risk Factors
17.
J Obstet Gynaecol ; 43(1): 2151356, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36476308

ABSTRACT

Aberrant Septin9 methylation in cervical cancer has been rarely studied. We aimed to identify its diagnostic value in cervical cancer using cervical scrapings, and its predictive potential in plasma for pelvic nodal metastasis of cervical cancer. The statuses of methylated Septin9 in fresh cervical lesions and cervical scrapings were first evaluated by using quantitative methylation-specific PCR. Subsequently, the relationship between Septin9 methylation in 113 plasma samples and pelvic nodal metastasis of cervical cancer was evaluated. Methylated Septin9 was detected in all cancerous tissues, but not in cervicitis. The degrees of Septin9 methylation increased with growing severity of cervical lesions in cervical scrapings. The sensitivity of methylated Septin9 was lower than that of cytology, while it yielded a high specificity and area under the curve in detecting high-grade squamous intraepithelial lesion or cervical cancer; and when Septin9 methylation combined with HPV16/18 genotyping, the sensitivity would increase from 70.42% to 82.39%. Plasma-based Septin9 methylation had a high discriminatory power in predicting pelvic nodal metastasis of cervical cancer, with an optimal specificity of 81.48%. In conclusion, we demonstrated methylated Septin9 to be an innovative diagnostic biomarker for cervical cancer and its non-invasive predictive potential in plasma for pelvic nodal metastasis of cervical cancer.Impact statementWhat is already known on this subject? The occurrence of cervical cancer is related to Septin9 methylation. In fresh specimens and cervical scrapings, we found the degrees of methylated Septin9 increased with growing severity of cervical lesions. Compared with HPV16/18 genotyping and cytological detection, Septin9 methylation had a better specificity and AUC in detecting ≥ HSIL. Furthermore, plasma-based Septin9 methylation also had a high specificity for pelvic lymphatic metastasis prediction.What the results of this study add? Methylation analysis of Septin9 indicated a similar sensitivity, specificity and AUC in detecting ≥ HSIL, relative to HPV16/18 genotyping. Compared with cytological method, Septin9 methylation also yielded a higher specificity and AUC in detecting ≥ HSIL. And we also found plasma-based Septin9 methylation had a high discriminatory power in predicting pelvic nodal metastasis of cervical cancer, with an optimal specificity of 81.48%; additionally an increasing sensitivity from 50% to nearly 80% was found when combined with SCCAg.What the implications are of these findings for clinical practice and/or further research? This study aimed to evaluate the relationship between Septin9 methylation and cervical cancer, and to explore the value of methylated Septin9 in the detection of cervical (pre)cancerous lesions. Moreover, we would explore plasma-based ctDNA biomarkers for pelvic lymphatic metastasis prediction of cervical cancer, to improve non-invasive predictive accuracy of pelvic nodal metastasis and reduce the complications caused by pelvic lymphadenectomy.


Subject(s)
Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , DNA Methylation , Human papillomavirus 16/genetics , Lymphatic Metastasis , Human papillomavirus 18 , Biomarkers, Tumor/genetics , Uterine Cervical Dysplasia/pathology , Sensitivity and Specificity , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Papillomavirus Infections/genetics
18.
Environ Sci Technol ; 56(10): 6399-6414, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35510873

ABSTRACT

Secondary microplastics usually come from the breakdown of larger plastics due to weathering and environmental stress cracking of plastic wastes. In the present study, 5013 plastic fragments were collected from coastal beaches, estuary dikes, and lake banks in China. The fragment sizes ranged from 0.2 to 17.1 cm, and the dominant polymers were polypropylene and polyethylene. Cracks were observed on the surfaces of 49-56% of the fragments. Based on the extracted crack images, we proposed a general crack pattern system including four crack types with specific definitions, abbreviations, and symbols. The two-dimensional spectral analysis of the cracks suggests that the first three patterns showed good regularity and supported the rationality of the pattern system. Some crack metrics (e.g., line density) were closely correlated with the carbonyl index and additives (e.g., phthalate esters) of fragments. For crack investigation in field, we proposed a succinct protocol, in which five crack ranks were established to directly characterize the degree of cracking based on the line density values. The system was successfully applied to distinguish the differences in crack features at two representative sites, which indicates that crack pattern is a useful tool to describe the morphological changes of plastic surfaces in the environment.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring/methods , Estuaries , Microplastics , Plastics/analysis , Water Pollutants, Chemical/analysis
19.
Cell Mol Biol (Noisy-le-grand) ; 68(5): 96-102, 2022 May 31.
Article in English | MEDLINE | ID: mdl-36029496

ABSTRACT

Heart failure is a growing public health problem, especially in the elderly, often occurring due to ischemia and coronary artery disease. Allopurinol can protect against myocardial ischemia and improve myocardial energy utilization during ischemia. On the other hand, matrix metalloproteinase (MMP) enzymes play an essential role in causing atherosclerosis, obstruction, and myocardial infarction. Therefore, in the present study, the effect of allopurinol on the function of the left ventricular and the activity of MMP-1, MMP-2, MMP-3, and MMP-9 were evaluated in heart failure patients. In this clinical trial, 82 patients were randomly assigned to allopurinol or placebo in addition to standard treatment. Echocardiographic evaluations were performed before treatment and six months after treatment. Also, after allopurinol treatment, plasma and peripheral blood mononuclear cells were extracted from control and intervention groups. The active form of MMPs was measured by ELISA and mRNA expression by Real-time PCR. The rate of change in left ventricular ejection fraction in the allopurinol group was significantly higher than patients in the control group. There was also found more improvement in NYHA class in patients receiving allopurinol than in the control group. ELISA results showed that all plasma MMP levels in the control group were significantly higher than those in the allopurinol group (P<0.001). Quantitative determination of mRNA expression in MMPs by Real-time RT-PCR revealed that, except for MMP-9, there was no significant difference in the expression of evaluated MMPs between the treatment and control groups. In general, the results showed that long-term administration of allopurinol improves left ventricular function, and it has beneficial effects on the life quality of patients with heart failure.


Subject(s)
Allopurinol , Heart Failure , Matrix Metalloproteinases , Ventricular Function, Left , Allopurinol/therapeutic use , Coronary Artery Disease , Heart Failure/drug therapy , Humans , Leukocytes, Mononuclear , Matrix Metalloproteinases/metabolism , RNA, Messenger , Stroke Volume
20.
BMC Vet Res ; 18(1): 171, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35546407

ABSTRACT

BACKGROUND: Finding the key amino acid sites that could affect viral biological properties or protein functions has always been a topic of substantial interest in virology. The nucleocapsid (N) protein is one of the principal proteins of the porcine reproductive and respiratory syndrome virus (PRRSV) and plays a vital role in the virus life cycle. The N protein has only 123 or 128 amino acids, some of key amino acid sites which could affect the protein functions or impair the viral biological characteristics have been identified. In this research, our objective was to find out whether there are other novel amino acid sites of the N protein can affect N protein functions or PRRSV-2 replication. RESULTS: In this study, we found mutated the serine78 and serine 99of the nucleocapsid (N) protein can reduce the N-induced expression of IL-10 mRNA; Then, by using reverse genetics system, we constructed and rescued the mutant viruses, namely, A78 and A99.The IFA result proved that the mutations did not affect the rescue of the PRRSV-2. However, the results of the multistep growth kinetics and qPCR assays indicated that, compared with the viral replication ability, the titres and gRNA levels of A78 were significantly decreased compared with the wild-type. Further study showed that a single amino acid change from serine to alanine at position 78 of the N protein could abrogates the level of viral genomic and subgenomic RNAs. It means the mutation could significant decrease the viral replication efficiency in vitro. CONCLUSIONS: Our results suggest that the serine78 of N protein is a key site which could affect the N protein function and PRRSV replication ability.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Cell Line , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Viral/genetics , Serine/chemistry , Swine , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL