Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688754

ABSTRACT

Biological treatment processes are an effective method for removing the nitrogen-containing contaminants that exist in coking wastewater. However, little is known about microbial composition and keystone taxa involved in biological nitrogen removal processes. In order to improve the removal efficiency of nitrogen-containing contaminants in anaerobic-aerobic-hydrolytic-aerobic (A/O1/H/O2) system, the microbial composition and interactions of keystone taxa should be clarified. The present work clarifies the removal performance of nitrogen-containing contaminants in the A/O1/H/O2 system, identifies the microbial community involved in various bioreactors, and reveals the keystone taxa within the microbial communities. Combined the processes of ammoniation, denitrification, and nitrification, total nitrogen decreased from 248 to 31 mg L-1 and achieved a removal efficiency of 87.5% in the full-scale A/O1/H/O2 system. High-throughput MiSeq sequencing revealed that Proteobacteria was the most abundant phylum in the A/O1/H/O2 system with relative abundances of 24%-50%. Thiobacillus dominated in bioreactors A and O1 with relative abundances of 2.90% and 4.44%, respectively, while Nitrospira was identified as the most dominant genus in bioreactors H and O2, accounting for 13.33% and 18.38%, respectively. The microbial community composition and co-occurrence network analysis showed that the keystone taxa belonged to Thiobacillus, Nitrospira, Bdellovibrio, Planctomyces, Desulfotomaculum, and Sphingobium, which are related to nitrogen degradation.


Subject(s)
Coke , Microbiota , Water Purification , Sewage/microbiology , Denitrification , Nitrogen/metabolism , Nitrification , Bacteria , Bioreactors
2.
Arch Microbiol ; 204(7): 426, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35751757

ABSTRACT

The hydrolytic acidification process has a strong ability to conduct denitrogenation and increase the biological oxygen demand/chemical oxygen demand ratio in O/H/O coking wastewater treatment system. More than 80% of the total nitrogen (TN) was removed in the hydrolytic bioreactor, and the hydrolytic acidification process contributed to the provision of carbon sources for the subsequent nitrification process. The structure and diversity of microbial communities were elaborated using high-throughput MiSeq of the 16S rRNA genes. The results revealed that the operational taxonomic units (OTUs) belonged to phyla Bacteroidetes, Betaproteobacteria, and Alphaproteobacteria were the dominant taxa involved in the denitrogenation and degradation of refractory contaminants in the hydrolytic bioreactor, with relative abundances of 22.94 ± 3.72, 29.77 ± 2.47, and 18.23 ± 0.26%, respectively. The results of a redundancy analysis showed that the OTUs belonged to the genera Thiobacillus, Rhodoplanes, and Hylemonella in the hydrolytic bioreactor strongly positively correlated with the chemical oxygen demand, TN, and the removal of phenolics, respectively. The results of a microbial co-occurrence network analysis showed that the OTUs belonged to the phylum Bacteroidetes and the genus Rhodoplanes had a significant impact on the efficiency of removal of contaminants that contained nitrogen in the hydrolytic bioreactor. The potential function profiling results indicate the complementarity of nitrogen metabolism, methane metabolism, and sulfur metabolism sub-pathways that were considered to play a significant role in the process of denitrification. These results provide new insights into the further optimization of the performance of the hydrolytic bioreactor in coking wastewater treatment.


Subject(s)
Coke , Microbiota , Water Purification , Bioreactors/microbiology , Nitrogen , RNA, Ribosomal, 16S/genetics , Wastewater/microbiology
3.
Environ Sci Pollut Res Int ; 30(1): 2103-2117, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35930152

ABSTRACT

Taking into account difficulties in exhaustive simultaneous decarbonation and denitrogenation in biological treatment of coking wastewater (CWW), a novel full-scale CWW biological treatment sequentially combining anaerobic, aerobic, hydrolytic, and aerobic reactors (A/O1/H/O2) was designed performing excellent removal of carbon-containing pollutants in the bioreactors A and O1, while the nitrogen-containing compounds in the bioreactors H and O2. To provide an effective tool for the CWW treatment monitoring and control, the succession of microbial community in this unique toxic CWW habitat should be established and characterized in detail. The results of 16S rRNA genes revealed Acidobacteria dominating in the unique CWW habitat. The dominant groups in bioreactors A and O1 include Proteobacteria, Firmicutes, and Acidobacteria, while Proteobacteria, Acidobacteria, Nitrospirae, and Planctomycetes dominate in reactors H and O2. The genera of Rhodoplanes, Bacillus, and Leucobacter are rich in genes responsible for the xenobiotics biodegradation and metabolism pathway. The Mantel test and PCA results showed the microbial communities of A/O1/H/O2 sequence correlating strongly with SRT, and COD load and removal. The co-occurrence network analysis indicated decarbonation and denitrogenation driven by two network modules having the keystone taxa belonging to the Comamonadaceae and Hyphomicrobiaceae families. The results significantly expanded the knowledge on the diversity, structure, and function of the CWW active sludge differentiating the relationships between bacterial communities and environmental variables in CWW treatment.


Subject(s)
Coke , Wastewater , Humans , RNA, Ribosomal, 16S/metabolism , Sewage/microbiology , Bacteria/metabolism , Acidobacteria/genetics , Bioreactors , Waste Disposal, Fluid
4.
PLoS One ; 15(12): e0243748, 2020.
Article in English | MEDLINE | ID: mdl-33301488

ABSTRACT

The pre-aerobic process of coking wastewater treatment has strong capacity of decarbonization and detoxification, which contribute to the subsequent dinitrogen of non-carbon source/heterotrophic denitrification. The COD removal rate can reach > 90% in the first aerobic bioreactor of the novel O/H/O coking wastewater treatment system during long-term operation. The physico-chemical characteristics of influent and effluent coking wastewater in the first aerobic bioreactor were analyzed to examine how they correlated with bacterial communities. The diversity of the activated sludge microbial community was investigated using a culture-independent molecular approach. The microbial community functional profiling and detailed pathways were predicted from the 16S rRNA gene-sequencing data by the PICRUSt software and the KEGG database. High-throughput MiSeq sequencing results revealed a distinct microbial composition in the activated sludge of the first aerobic bioreactor of the O/H/O system. Proteobacteria, Bacteroidetes, and Chlorobi were the decarbonization and detoxification dominant phyla with the relative abundance of 84.07 ± 5.45, 10.89 ± 6.31, and 2.96 ± 1.12%, respectively. Thiobacillus, Rhodoplanes, Lysobacter, and Leucobacter were the potential major genera involved in the crucial functional pathways related to the degradation of phenols, cyanide, benzoate, and naphthalene. These results indicated that the comprehensive understanding of the structure and function diversity of the microbial community in the bioreactor will be conducive to the optimal coking wastewater treatment.


Subject(s)
Bioreactors/microbiology , Microbiota , Wastewater/microbiology , Water Purification , Aerobiosis , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Water Purification/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL