ABSTRACT
Deposition of ß -amyloid (Aß) peptides, cleavage products of ß-amyloid precursor protein (APP) by ß-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer's disease (AD). γ-Secretase inhibition is a therapeutical anti-Aß approach, although changes in the enzyme's activity in AD brain are unclear. Cerebrospinal fluid (CSF) Aß peptides are thought to derive from brain parenchyma and thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aß efficacy. The present study compared active γ-secretase binding sites with Aß deposition in aged and AD human cerebrum, and explored the possibility of Aß production and secretion by the choroid plexus (CP). The specific binding density of [(3) H]-L-685,458, a radiolabeled high-affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with similar ages and post-mortem delays. The CP in post-mortem samples exhibited exceptionally high [(3) H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and ß-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins and released Aß40 and Aß42 into the medium. Overall, our results suggest that γ-secretase activity appears unaltered in the cerebrum in AD and is not correlated with regional amyloid plaque pathology. The CP appears to be a previously unrecognised non-neuronal contributor to CSF Aß, probably at reduced levels in AD.
Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Cerebrum/metabolism , Choroid Plexus/metabolism , Peptide Fragments/cerebrospinal fluid , Aged , Aged, 80 and over , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Cells, Cultured , Female , Humans , Male , Middle Aged , Peptide Fragments/genetics , Peptide Fragments/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Protein Binding , Radioligand Assay , Rats , Rats, Sprague-DawleyABSTRACT
The spinal cord is composed of distinct neuronal groups with well-defined anatomic connections. In some transgenic (Tg) models of Alzheimer's disease (AD), amyloid plaques develop in this structure, although the underlying cellular mechanism remains elusive. We attempted to explore the origin, evolution, and modulation of spinal ß-amyloid (Aß) deposition using Tg mice harboring five familiar AD-related mutations (5XFAD) as an experiential model. Dystrophic neuritic elements with enhanced ß-secretase-1 (BACE1) immunoreactivity (IR) appeared as early as 2 months of age, and increased with age up to 12 months examined in this study, mostly over the ventral horn (VH). Extracellular Aß IR emerged and developed during this same period, site-specifically co-existing with BACE1-labeled neurites often in the vicinity of large VH neurons that expressed the mutant human APP. The BACE1-labeled neurites almost invariably colocalized with ß-amyloid precursor protein (APP) and synaptophysin, and frequently with the vesicular glutamate transporter-1 (VGLUT). Reduced IR for the neuronal-specific nuclear antigen (NeuN) occurred in the VH by 12 months of age. In 8-month-old animals surviving 6 months after a unilateral sciatic nerve transection, there were significant increases of Aß, BACE1, and VGLUT IR in the VN of the ipsilateral relative to contralateral lumbar spinal segments. These results suggest that extracellular Aß deposition in 5XFAD mouse spinal cord relates to a progressive and amyloidogenic synaptic pathology largely involving presynaptic axon terminals from projection neurons in the brain. Spinal neuritic plaque formation is enhanced after peripheral axotomy, suggesting a retrograde transneuronal modulation on pathogenesis.
Subject(s)
Amyloid beta-Protein Precursor/genetics , Peripheral Nerve Injuries/pathology , Plaque, Amyloid/pathology , Retrograde Degeneration , Spinal Cord/pathology , Age Factors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , DNA-Binding Proteins , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Peripheral Nerve Injuries/metabolism , Plaque, Amyloid/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology , Sciatic Nerve/injuries , Spinal Cord/metabolism , Synaptophysin/metabolism , Vesicular Glutamate Transport Protein 1/metabolismABSTRACT
The comorbidity between epilepsy and Alzheimer's disease (AD) is a topic of growing interest. Senile plaques and tauopathy are found in epileptic human temporal lobe structures, and individuals with AD have an increased incidence of spontaneous seizures. However, why and how epilepsy is associated with enhanced AD-like pathology remains unknown. We have recently shown ß-secretase-1 (BACE1) elevation associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Here we sought to explore whether BACE1 upregulation affected the development of Alzheimer-type neuropathology in mice expressing mutant human APP, presenilin and tau proteins, the triple transgenic model of AD (3×Tg-AD). 3×Tg-AD mice were treated with pilocarpine or saline (i.p.) at 6-8 months of age. Immunoreactivity (IR) for BACE1, ß-amyloid (Aß) and phosphorylated tau (p-tau) was subsequently examined at 9, 11 or 14 months of age. Recurrent convulsive seizures, as well as mossy fiber sprouting and neuronal death in the hippocampus and limbic cortex, were observed in all epileptic mice. Neuritic plaques composed of BACE1-labeled swollen/sprouting axons and extracellular AßIR were seen in the hippocampal formation, amygdala and piriform cortices of 9 month-old epileptic, but not control, 3×Tg-AD mice. Densities of plaque-associated BACE1 and AßIR were elevated in epileptic versus control mice at 11 and 14 months of age. p-Tau IR was increased in dentate granule cells and mossy fibers in epileptic mice relative to controls at all time points examined. Thus, pilocarpine-induced chronic epilepsy was associated with accelerated and enhanced neuritic plaque formation and altered intraneuronal p-tau expression in temporal lobe structures in 3×Tg-AD mice, with these pathologies occurring in regions showing neuronal death and axonal dystrophy.