Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Neurosci ; 41(5): 911-919, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33443081

ABSTRACT

Animals evolved in complex environments, producing a wide range of behaviors, including navigation, foraging, prey capture, and conspecific interactions, which vary over timescales ranging from milliseconds to days. Historically, these behaviors have been the focus of study for ecology and ethology, while systems neuroscience has largely focused on short timescale behaviors that can be repeated thousands of times and occur in highly artificial environments. Thanks to recent advances in machine learning, miniaturization, and computation, it is newly possible to study freely moving animals in more natural conditions while applying systems techniques: performing temporally specific perturbations, modeling behavioral strategies, and recording from large numbers of neurons while animals are freely moving. The authors of this review are a group of scientists with deep appreciation for the common aims of systems neuroscience, ecology, and ethology. We believe it is an extremely exciting time to be a neuroscientist, as we have an opportunity to grow as a field, to embrace interdisciplinary, open, collaborative research to provide new insights and allow researchers to link knowledge across disciplines, species, and scales. Here we discuss the origins of ethology, ecology, and systems neuroscience in the context of our own work and highlight how combining approaches across these fields has provided fresh insights into our research. We hope this review facilitates some of these interactions and alliances and helps us all do even better science, together.


Subject(s)
Behavior, Animal/physiology , Ecology/trends , Ethology/trends , Spatial Navigation/physiology , Systems Biology/trends , Animals , Ecology/methods , Ethology/methods , Machine Learning/trends , Rodentia , Systems Biology/methods
2.
Bio Protoc ; 13(20): e4854, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37900100

ABSTRACT

Whole-brain clearing and imaging methods are becoming more common in mice but have yet to become standard in rats, at least partially due to inadequate clearing from most available protocols. Here, we build on recent mouse-tissue clearing and light-sheet imaging methods and develop and adapt them to rats. We first used cleared rat brains to create an open-source, 3D rat atlas at 25 µm resolution. We then registered and imported other existing labeled volumes and made all of the code and data available for the community (https://github.com/emilyjanedennis/PRA) to further enable modern, whole-brain neuroscience in the rat. Key features • This protocol adapts iDISCO (Renier et al., 2014) and uDISCO (Pan et al., 2016) tissue-clearing techniques to consistently clear rat brains. • This protocol also decreases the number of working hours per day to fit in an 8 h workday. Graphical overview.

3.
Nat Commun ; 13(1): 3235, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688813

ABSTRACT

During decision making in a changing environment, evidence that may guide the decision accumulates until the point of action. In the rat, provisional choice is thought to be represented in frontal orienting fields (FOF), but this has only been tested in static environments where provisional and final decisions are not easily dissociated. Here, we characterize the representation of accumulated evidence in the FOF of rats performing a recently developed dynamic evidence accumulation task, which induces changes in the provisional decision, referred to as "changes of mind". We find that FOF encodes evidence throughout decision formation with a temporal gain modulation that rises until the period when the animal may need to act. Furthermore, reversals in FOF firing rates can be accounted for by changes of mind predicted using a model of the decision process fit only to behavioral data. Our results suggest that the FOF represents provisional decisions even in dynamic, uncertain environments, allowing for rapid motor execution when it is time to act.


Subject(s)
Decision Making , Animals , Rats , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL