Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Immunol ; 208(2): 278-285, 2022 01 15.
Article in English | MEDLINE | ID: mdl-35017217

ABSTRACT

Despite tremendous success against hematological malignancies, the performance of chimeric Ag receptor T cells against solid tumors remains poor. In such settings, the lack of success of this groundbreaking immunotherapy is in part mediated by ligand engagement of immune checkpoint molecules on the surface of T cells in the tumor microenvironment. Although CTLA-4 and programmed death-1 (PD-1) are well-established checkpoints that inhibit T cell activity, the engagement of glycans and glycan-binding proteins are a growing area of interest due to their immunomodulatory effects. This review discusses exemplary strategies to neutralize checkpoint molecules through an in-depth overview of genetic engineering approaches aimed at overcoming the inhibitory programmed death ligand-1 (PD-L1)/PD-1 axis in T cell therapies and summarizes current knowledge on glycoimmune interactions that mediate T cell immunosuppression.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/transplantation , CTLA-4 Antigen/metabolism , Cell- and Tissue-Based Therapy/methods , Galectin 1/immunology , Galectin 3/immunology , Galectins/immunology , Humans , Immunomodulation/immunology , Lymphocyte Activation/immunology , Neoplasms/immunology , Polysaccharides/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
2.
Elife ; 112022 Oct 13.
Article in English | MEDLINE | ID: mdl-36226814

ABSTRACT

Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.


The Earth's environment is full of reactive chemicals that can cause harm to organisms. One of the most common is hydrogen peroxide, which is produced by several bacteria in concentrations high enough to kill small animals, such as the roundworm Caenorhabditis elegans. Forced to live in close proximity to such perils, C. elegans have evolved defenses to ensure their survival, such as producing enzymes that can break down hydrogen peroxide. However, this battle is compounded by other factors. For instance, rising temperatures can increase the rate at which the hydrogen peroxide produced by bacteria reacts with the molecules and proteins of C. elegans. In 2020, a group of researchers found that roundworms sense these temperature changes through special cells called sensory neurons and use this information to control the generation of enzymes that break down hydrogen peroxide. This suggests that C. elegans may pre-emptively prepare their defenses against hydrogen peroxide in response to higher temperatures so they are better equipped to shield themselves from this harmful chemical. To test this theory, Servello et al. ­ including some of the authors involved in the 2020 study ­ exposed C. elegans to a species of bacteria that produces hydrogen peroxide. This revealed that the roundworms were better at dealing with the threat of hydrogen peroxide when growing in warmer temperatures. Experiments done in C. elegans lacking a class of sensory cells, the AFD neurons, showed that these neurons increased the roundworms' resistance to the chemical when temperatures increase. They do this by repressing the activity of INS-39, a hormone that stops C. elegans from switching on their defense mechanism against peroxides. This is the first example of a multicellular organism preparing its defenses to a chemical after sensing something (such as temperature) that enhances its reactivity. It is possible that other animals may also use this 'enhancer sensing' strategy to anticipate and shield themselves from hydrogen peroxide and potentially other external threats.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Hydrogen Peroxide/metabolism , Temperature , Caenorhabditis elegans Proteins/metabolism , Sensory Receptor Cells/metabolism , Perception
SELECTION OF CITATIONS
SEARCH DETAIL